相关习题
 0  212853  212861  212867  212871  212877  212879  212883  212889  212891  212897  212903  212907  212909  212913  212919  212921  212927  212931  212933  212937  212939  212943  212945  212947  212948  212949  212951  212952  212953  212955  212957  212961  212963  212967  212969  212973  212979  212981  212987  212991  212993  212997  213003  213009  213011  213017  213021  213023  213029  213033  213039  213047  266669 

科目: 来源: 题型:

已知△ABC的三个内角A、B、C所对的边分别为a,b,c,面积为S,且满足:S•(tan
C
2
+cot
C
2
)=18.
(1)求ab的值;
(2)若c=3
2
,试确定∠C的范围.

查看答案和解析>>

科目: 来源: 题型:

如图,在几何体ABC-A1B1C1中,点A1,B1,C1在平面ABC内的正投影分别为A,B,C,且AB⊥BC,AA1=BB1=4,AB=BC=CC1=2,E为AB1中点,
(Ⅰ)求证;CE∥平面A1B1C1
(Ⅱ)求证:求二面角B1-AC1-C的大小.

查看答案和解析>>

科目: 来源: 题型:

设m∈R,在平面直角坐标系中,已知向量
a
=(mx,y+1)
,向量
b
=(x,y-1)
a
b
,动点M(x,y)的轨迹为E.求轨迹E的方程,并说明该方程所表示曲线的形状.

查看答案和解析>>

科目: 来源: 题型:

(理科)如图,正三棱锥P-ABC中,底面ABC的边长为2,正三棱锥P-ABC的体积为V=1,M为线段BC的中点,求直线PM与平面ABC所成的角(结果用反三角函数值表示).

查看答案和解析>>

科目: 来源: 题型:

设f(x)=
1
2
(1+x)(ax2+bx+c),g(x)=-e -x+
1
2
-|ln(x+1)|+k
(1)若f(x)的图象关于x=-1对称,且f(1)=2,求f(x)的解析式;
(2)对于(1)中的f(x),讨论f(x)与g(x)的图象的交点个数.

查看答案和解析>>

科目: 来源: 题型:

在△ABC中,已知|BC|=2,且
|AB|
|AC|
=
2
,求点A的轨迹方程,并说明轨迹是什么图形.

查看答案和解析>>

科目: 来源: 题型:

四棱锥S-ABCD,底面ABCD为平行四边形,侧面SBC⊥底面ABCD.已知∠DAB=135°,BC=2
2
,SB=SC=AB=2,F为线段SB的中点.
(Ⅰ)求证:SD∥平面CFA;
(Ⅱ)求面SCD与面SAB所成二面角大小.

查看答案和解析>>

科目: 来源: 题型:

如图,在四棱锥S-ABCD中,SD⊥底面ABCD,底面ABCD是矩形,且SD=AD=
2
AB
,E是SA的中点.
(1)求证:平面BED⊥平面SAB;
(2)求平面BED与平面SBC所成二面角(锐角)的大小.

查看答案和解析>>

科目: 来源: 题型:

设点p(k,m)在以 A(1,2 )、B(1,0)、C(-1,0)为顶点的三角形周界上运动,求抛物线y=x2-2kx+m 的顶点轨迹方程.

查看答案和解析>>

科目: 来源: 题型:

如图,在△ABC中,∠C=90°,AC=BC=a,点P在边AB上,设
AP
PB
(λ>0),过点P作PE∥BC交AC于E,作PF∥AC交BC于F.沿PE将△APE翻折成△A′PE使平面A′PE⊥平面ABC;沿PE将△BPF翻折成△B′PF,使平面B′PF⊥平面ABC.
(1)求证:B′C∥平面A′PE;
(2)是否存在正实数λ,使得二面角C-A′B′-P的大小为90°?若存在,求出λ的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案