相关习题
 0  212861  212869  212875  212879  212885  212887  212891  212897  212899  212905  212911  212915  212917  212921  212927  212929  212935  212939  212941  212945  212947  212951  212953  212955  212956  212957  212959  212960  212961  212963  212965  212969  212971  212975  212977  212981  212987  212989  212995  212999  213001  213005  213011  213017  213019  213025  213029  213031  213037  213041  213047  213055  266669 

科目: 来源: 题型:

如图,已知平行六面体ABCD-A1B1C1D1的底面为正方形,O1、O分别为上、下底面的中心,且A1在底面ABCD上的射影是O.
(1)求证:平面O1DC⊥平面ABCD;
(2)若∠A1AB=60°,求平面BAA1与平面CAA1的夹角的余弦值.

查看答案和解析>>

科目: 来源: 题型:

如图,在四面体P-ABC中,PA⊥平面ABC,AB⊥BC,PA=2,AC=2
2
.AB=
2
.D为PA的中点,M为CD的中点,N为PB上一点,且PN=3BN.
(Ⅰ)求证:MN⊥PA;
(Ⅱ)求二面角B-CD-A的大小.

查看答案和解析>>

科目: 来源: 题型:

已知函数f(x)=|x-2|+2|x-a|(a∈R).
(Ⅰ)当a=1时,解不等式f(x)>3;
(Ⅱ)不等式f(x)≥1在区间(-∞,+∞)上恒成立,求实数a的取值范围.

查看答案和解析>>

科目: 来源: 题型:

如图,三棱柱ABC-A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°.
(Ⅰ)证明:AB⊥A1C;
(Ⅱ)若AB=CB=2,A1C=
6
,求二面角B-AC=A1的余弦值.

查看答案和解析>>

科目: 来源: 题型:

如图,AD、BE是△ABC的高,DF⊥AB于F,DF交BE于G,FD的延长线交AC的延长线于H,求证:DF2=FG•FH.

查看答案和解析>>

科目: 来源: 题型:

已知曲线C满足到直线x=-
p
2
的距离与到点A(
p
2
,0)的最小距离相等,p>0,直线l交此曲线于不同的两个点A(x1,y1)B(x2,y2).
(1)求曲线C的轨迹方程;
(2)当直线L过M(-p,0),证y1y2是定值;
(3)当y1y2=-p时直线l是否过定点,若不过,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

如图,AB是⊙O的一条直径,过A作⊙O的切线,在切线上取一点C,使AC=AB,连接OC,与⊙O交于点D,BD的延长线与AC交于点E,求证:
(Ⅰ)∠CDE=∠DAE;
(Ⅱ)AE=CD.

查看答案和解析>>

科目: 来源: 题型:

选修4-5;不等式选讲
已知a>0,b>0,a+b=1,求证:
(Ⅰ)
1
a
+
1
b
+
1
ab
≥8;
(Ⅱ)(1+
1
a
)(1+
1
b
)≥9.

查看答案和解析>>

科目: 来源: 题型:

如图,四边形ABCD是正方形,EA⊥平面ABCD,EA∥PD,AD=PD=2EA,F,G,H分别为PB,EB,PC的中点.
(1)求证:FG∥平面PED;
(2)求平面FGH与平面PBC所成锐二面角的大小.

查看答案和解析>>

科目: 来源: 题型:

如图,在三棱柱ABC-A1B1C1中,底面ABC是边长为2的正三角形,侧棱长为2,且侧棱AA1⊥底面ABC,点D是BC的中点
(1)求证:AD⊥C1D;
(2)求直线AC与平面ADC1所成角的余弦值.

查看答案和解析>>

同步练习册答案