相关习题
 0  213146  213154  213160  213164  213170  213172  213176  213182  213184  213190  213196  213200  213202  213206  213212  213214  213220  213224  213226  213230  213232  213236  213238  213240  213241  213242  213244  213245  213246  213248  213250  213254  213256  213260  213262  213266  213272  213274  213280  213284  213286  213290  213296  213302  213304  213310  213314  213316  213322  213326  213332  213340  266669 

科目: 来源: 题型:

OA
=(2,5),
OB
=(3,1),
OC
=(4,2),点M在直线OC上,且满足AM⊥BM,求点M的坐标.

查看答案和解析>>

科目: 来源: 题型:

已知集合P={x|x2-4px+2p+6=0},Q={x|x<0,x∈R},若P∩Q≠∅,求实数p的取值范围.

查看答案和解析>>

科目: 来源: 题型:

某学校随机抽取部分新生调查其上学路上所需时间(单位:分钟),并将所得数据绘制成频率分布直方图(如图),其中,上学路上所需时间的范围是[0,100],样本数据分组为[0,20),[20,40),[40,60),[60,80),[80,100].
(1)求直方图中x的值;
(2)如果上学路上所需时间不少于60分钟的学生可申请在学校住宿,请估计学校1000名新生中有多少名学生可以申请住宿;
(3)现有6名上学路上时间小于40分钟的新生,其中2人上学路上时间小于20分钟.从这6人中任选2人,设这2人中上学路上时间小于20分钟人数为X,求X的分布列和数学期望.

查看答案和解析>>

科目: 来源: 题型:

已知{an}为等比数列,其中a1=1,且a2,a3+a5,a4成等差数列.
(1)求数列{an}的通项公式:
(2)设bn=(2n-1)•an,求数列{bn}的前n项和Tn

查看答案和解析>>

科目: 来源: 题型:

已知函数f(x)=
1+x
+
1-x

(1)求函数f(x)的定义域并判断函数的奇偶性;
(2)设F(x)=m
1-x2
+f(x)
,若记f(x)=t,求函数F(x)的最大值的表达式g(m);
(3)在(2)的条件下,求满足不等式g(-m)>(
9
4
)m
的实数m的取值范围.

查看答案和解析>>

科目: 来源: 题型:

已知圆C经过坐标原点O和点(2,2),且圆心在x轴上.
(Ⅰ)求圆C的方程;
(Ⅱ)设直线l经过点(1,2),且l与圆C相交所得弦长为2
3
,求直线l的方程.

查看答案和解析>>

科目: 来源: 题型:

已知P(x,y),A(-1,0),向量
.
PA
.
m
=(1,1)共线.
(1)求y关于x的函数解析式.
(2)是否在直线y=2x和直线y=3x上分别存在一点B、C,使得满足∠BPC为锐角时x取值集合为{x|x<-
7
 或x>
7
}?若存在,求出这样的B、C的坐标;若不存在,说明理由.

查看答案和解析>>

科目: 来源: 题型:

设向量
a
=(4cosα,sinα),
b
=(sinβ,4cosβ),
c
=(cosβ,-4sinβ).
(1)若
a
b
=2
a
c
,求tan(α+β)的值;
(2)求|
b
+
c
|的最大值;    
(3)若tanαtanβ=16,求证:
a
b

查看答案和解析>>

科目: 来源: 题型:

前不久央视记者就“你幸福吗?”采访了走在接头及工作岗位上的部分人员.人们常说的“幸福感指数”就是指某个人主观地评价他对自己目前生活状态的满意程度,常用区间[0,10]内的一个数来表示,该数越接近10表示满意度越高.为了解某地区居民的幸福感,随机对该地区的男、女居民各500人进行了调查,调查数据如表所示:
幸福感指数 [0,2) [2,4) [4,6) [6,8) [8,10]
男居民人数 10 20 220 125 125
女居民人数 10 10 180 175 125
根据表格,解答下面的问题:
(1)补全频率分布直方图,并根据频率分布直方图估算该地区居民幸福感指数的平均值;
(2)如果居民幸福感指数不小于6,则认为其幸福.据此,又在该地区随机抽取3对夫妻进行调查,用X表示他们之中幸福夫妻(夫妻二人都感到幸福)的对数,求X的分布列及期望(以样本的频率作为总体的概率).

查看答案和解析>>

科目: 来源: 题型:

在数列{an}中,a1=
1
3
,an+1=
n+1
3n
an

(Ⅰ)证明{
an
n
}是等比数列,并求{an}的通项公式;
(Ⅱ)求{an}的前n项和Sn

查看答案和解析>>

同步练习册答案