相关习题
 0  213184  213192  213198  213202  213208  213210  213214  213220  213222  213228  213234  213238  213240  213244  213250  213252  213258  213262  213264  213268  213270  213274  213276  213278  213279  213280  213282  213283  213284  213286  213288  213292  213294  213298  213300  213304  213310  213312  213318  213322  213324  213328  213334  213340  213342  213348  213352  213354  213360  213364  213370  213378  266669 

科目: 来源: 题型:

二面角α-l-β大小为60°,半平面α、β内分别有点A、B,AC⊥l于C、BD⊥l于D,已知AC=4、CD=5,DB=6,求线段AB的长.

查看答案和解析>>

科目: 来源: 题型:

已知直线x+2y-3=0与圆x2+y2+x-6y+m=0相交于P,Q两点,且OP⊥OQ(O为坐标原点),求实数m的值.

查看答案和解析>>

科目: 来源: 题型:

如图,边长为3的正方形ABCD中
(1)点E、F分别是AB、BC上的点,将△BEF,△AED,△DCF分别沿EF、DE、DF折起,使A、B、C三点重合于点P,求PD与平面EFD所成角的正弦值;
(2)当BE=BF=
1
3
BC时,将△AED,△DCF分别沿DE、DF折起,使A、C两点重合于点Q,求点E到平面QDF的距离.

查看答案和解析>>

科目: 来源: 题型:

已知函数f(log2x)=x-
1
x

(1)求f(x)的表达式;
(2)若不等式2tf(2t)+mf(t)≥0对于t∈[1,2]恒成立,求实数m的取值范围;
(3)若f(x)中,x=sinα+cosα,α∈(-
π
2
,0),且f(1-m)+f(1-m2)<0,求实数m的取值范围.

查看答案和解析>>

科目: 来源: 题型:

将凸n边形A1A2…An的边与对角线染上红、蓝两色之一,使得没有三边均为蓝色的三角形.对k=1,2,…,n,记bk由顶点Ak出的蓝色边的条数,求证:b1+b2+…bn
n2
2

查看答案和解析>>

科目: 来源: 题型:

已知函数f(x)=x2-3x+2,请设计一个算法,画出算法的程序框图,求f(3)+f(-1)的值.

查看答案和解析>>

科目: 来源: 题型:

如图,矩形ABCD所在的半平面和直角梯形CDEF所在的半平面成60°的二面角,DE∥CF,CD⊥DE,AD=2,EF=3
2
,CF=6,∠CFE=45°.
(Ⅰ)求证:BF∥平面ADE;
(Ⅱ)在线段CF上求一点G,使锐二面角B-EG-D的余弦值为
1
4

查看答案和解析>>

科目: 来源: 题型:

如图,平面四边形ABCD中,AB=BC=CD=a,∠B=90°,∠BCD=135°,沿对角线AC将△ABC折起,使平面ABC与平面ACD互相垂直.
(1)求证:AB⊥CD;
(2)在BD上是否存在一点P,使CP⊥平面ABD,证明你的结论;
(3)求点C到平面ABD的距离.

查看答案和解析>>

科目: 来源: 题型:

在平面直角坐标系xOy中,已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)与直线l:x=m(m∈R).四点(3,1),(3,-1),(-2
2
,0),(
3
3
)中有三个点在椭圆C上,剩余一个点在直线l上.
(1)求椭圆C的方程;
(2)若动点P在直线l上,过P作直线交椭圆C于M,N两点,使得PM=PN,再过P作直线l′⊥MN.证明:直线l′恒过定点,并求出该定点的坐标.

查看答案和解析>>

科目: 来源: 题型:

如果一条抛物线y=ax2+bx+c(a≠0)与x轴有两个交点,那么以该抛物线的顶点和这两个交点为顶点的三角形称为这条抛物线的“抛物线三角形”.
(Ⅰ)“抛物线三角形”一定是
 
三角形(提示:在答题卡上作答);
(Ⅱ)若抛物线m:y=a(x-2)2+b(a>0,b<0)的“抛物线三角形”是直角三角形,求a,b满足的关系式;
(Ⅲ)如图,△OAB是抛物线n:y=-x2+tx(t>0)的“抛物线三角形”,是
否存在以原点O为对称中心的矩形ABCD?若存在,求出过O、C、D三点的抛物线的表达式;若不存在,说明理由.

查看答案和解析>>

同步练习册答案