相关习题
 0  213406  213414  213420  213424  213430  213432  213436  213442  213444  213450  213456  213460  213462  213466  213472  213474  213480  213484  213486  213490  213492  213496  213498  213500  213501  213502  213504  213505  213506  213508  213510  213514  213516  213520  213522  213526  213532  213534  213540  213544  213546  213550  213556  213562  213564  213570  213574  213576  213582  213586  213592  213600  266669 

科目: 来源: 题型:

关于x的方程(x2-1)2-|x2-1|+k=0.
(Ⅰ)当k=0时,写出方程的所有实数解;
(Ⅱ)求实数k的范围,使得方程恰有8个不同的实数解.

查看答案和解析>>

科目: 来源: 题型:

为迎接2014年“马”年的到来,某校举办猜奖活动,参与者需先后回答两道选择题,问题A有三个选项,问题B有四个选项,但都只有一个选项是正确的,正确回答问题A可获奖金a元,正确回答问题B可获奖金b元.活动规定:参与者可任意选择回答问题的顺序,如果第一个问题回答正确,则继续答题,否则该参与者猜奖活动终止.假设一个参与者在回答问题前,对这两个问题都很陌生.
(Ⅰ)如果参与者先回答问题A,求其恰好获得奖金a元的概率;
(Ⅱ)试确定哪种回答问题的顺序能使该参与者获奖金额的期望值较大.

查看答案和解析>>

科目: 来源: 题型:

在数列{an}中,已知a1=
1
4
an+1
an
=
1
4
,bn+2=3log
1
4
an(n∈N*).
(1)求数列{an}、{bn}的通项公式;
(2)设数列{cn}满足cn=an•bn,求{cn}的前n项和Sn

查看答案和解析>>

科目: 来源: 题型:

已知M(3,-2),点N(x,y)为直线3x+4y-25=0上任意一点,
(1)求|MN|的最小值;
(2)求
x2+y2
的最小值.

查看答案和解析>>

科目: 来源: 题型:

已知函数f(x)=2cos2x+2
3
sinxcosx-1,
(1)求f(x)的最小正周期及对称轴方程;
(2)在△ABC中,角A,B,C所对的边分别是a,b,c,若f(
c
2
)=2且c2=ab,试判断△ABC的形状.

查看答案和解析>>

科目: 来源: 题型:

我国采用的PM2.5的标准为:日均值在35微克/立方米以下的空气质量为一级;在35微克/立方米一75微克/立方米之间的空气质量为二级;75微克/立方米以上的空气质量为超标.某城市环保部门随机抽取该市m天的PM2.5的日均值,发现其茎叶图和频率分布直方图都受到不同程度的破坏,可见部分如下图所示.

请据此解答如下问题:
(Ⅰ)求m的值,并分别计算:频率分布直方图中的[75,95)和[95,115]这两个矩形的高;
(Ⅱ)通过频率分布直方图枯计这m天的PM2.5日均值的中位数(结果保留分数形式);
(Ⅲ)从这m天的PM2.5日均值中随机抽取2天,记X表示抽到PM2.5超标的天数,求X的分布列和数学期望.

查看答案和解析>>

科目: 来源: 题型:

袋中装有大小相同的2个白球和3个黑球.
(1)采取放回抽样方式,从中依次摸出两个球,求两球颜色不同的概率;
(2)采取不放回抽样方式,从中依次摸出两个球,记ξ为摸出两球中白球的个数,求ξ的期望.

查看答案和解析>>

科目: 来源: 题型:

为了检测某种产品的质量,抽取了一个容量为100的样本,数据的分组及频率如下表:
分组 频数 频率
[10.75,10.85) 3 0.03
[10.85,10.95) 9 0.09
[10.95,11.05) 13 m
[11.05,11.15) 16 0.16
[11.15,11.25) a n
[11.25,11.35) 20 0.20
[11.35,11.45) b 0.07
[11.45,11.55) 4 0.04
[11.55,11.65) 2 0.02
合计 100 1.00
(1)求出上面频率分布表中的a,b,m,n的值;
(2)根据上表画出频率分布直方图;
(3)★根据上表和图,估计数据落在[10.95,11.35)范围内的频率是多少?

查看答案和解析>>

科目: 来源: 题型:

已知函数f(x)=loga(1-x)-loga(1+x),其中a>0,且a≠1.
(1)判断f(x)的奇偶性;
(2)若f(
1
2
)=1
,解不等式f(x)<1.

查看答案和解析>>

科目: 来源: 题型:

学校游园活动有这样一个游戏项目:甲箱子里装有3个白球、2个黑球,乙箱子里装有1个白球、2个黑球,这些球除颜色外完全相同,每次游戏从这两个箱子里各随机摸出2个球,若摸出的白球不少于2个,则获奖.(每次游戏结束后将球放回原箱)
(Ⅰ)求在1次游戏中获奖的概率;
(Ⅱ)求在2次游戏中获奖次数X的分布列及数学期望E(X).

查看答案和解析>>

同步练习册答案