相关习题
 0  213501  213509  213515  213519  213525  213527  213531  213537  213539  213545  213551  213555  213557  213561  213567  213569  213575  213579  213581  213585  213587  213591  213593  213595  213596  213597  213599  213600  213601  213603  213605  213609  213611  213615  213617  213621  213627  213629  213635  213639  213641  213645  213651  213657  213659  213665  213669  213671  213677  213681  213687  213695  266669 

科目: 来源: 题型:

已知圆A过点P(
2
2
)
,且与圆B:(x+2)2+(y-2)2=r2(r>0)关于直线x-y+2=0对称.
(1)求圆A的方程;
(2)若HE、HF是圆A的两条切线,E、F是切点,求
HE
HF
的最小值.
(3)过平面上一点Q(x0,y0)向圆A和圆B各引一条切线,切点分别为C、D,设
|QD|
|QC|
=2
,求证:平面上存在一定点M使得Q到M的距离为定值,并求出该定值.

查看答案和解析>>

科目: 来源: 题型:

已知函数f(x)=log
1
2
1-kx
x-1
为奇函数.
(I)求常数k的值;
(Ⅱ)若a>b>1,试比较f(a)与f(b)的大小;
(Ⅲ)若函数g(x)=f(x)-(
1
2
)x+m
,且g(x)在区间[3,4]上没有零点,求实数m的取值范围.

查看答案和解析>>

科目: 来源: 题型:

已知函数y=loga(x-2)(a>0,a≠1).
(1)求函数定义域和函数图象所过的定点;
(2)若已知x∈[4,6]时,函数最大值为2,求a的值.

查看答案和解析>>

科目: 来源: 题型:

已知函数f(x)=cos2ωx+
3
sinωxcosωx-
1
2
(ω>0)
的最小正周期为π.
(1)求ω值及f(x)的单调递增区间;
(2)在△ABC中,a、b、c分别是三个内角A、B、C所对边,若a=1,b=
2
f(
A
2
)=
3
2
,求B的大小.

查看答案和解析>>

科目: 来源: 题型:

已知点A,B的坐标分别是(-1,0),(1,0).直线AM、BM相交于点M,且它们的斜率之积为-1.
(1)求点M的轨迹E的方程;
(2)若过点H(0,h)(h>0)的两直线l1和l2与轨迹E都只有一个交点,且l1⊥l2,求h的值;
(3)在x轴上是否存在两个定点C,D,使得点M到点C的距离与到点D的距离的比恒为
2
2
,若存在,求出定点C,D;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

如图,已知椭圆
x2
a2
+
y2
b2
=1
(a>b>0)d的离心率为
2
2
,以该椭圆上的点和椭圆的左、右焦点F1、F2为顶点的三角形的周长为4(
2
+1
).一等轴双曲线的顶点是该椭圆的焦点,设P为该双曲线上异于顶点的任一点,直线PF1和PF2与椭圆的交点分别为A、B和C、D.
(1)求椭圆和双曲线的标准方程;
(2)是否存在常熟λ,使得|AB|+|CD|=λ|AB|•|CD|恒成立?若存在,求λ的值,若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

已知点E(2,1)和圆O:x2+y2=16.
(Ⅰ)过点E的直线l被圆O所截得的弦长为4
3
,求直线l的方程;
(Ⅱ)试探究是否存在这样的点M:M是圆O内部的整点(平面内横、纵坐标均为整数的点称为整点),且△OEM的面积S△OEM=2?若存在,求出点M的坐标,若不存在,说明理由.

查看答案和解析>>

科目: 来源: 题型:

(I)求值:
log23+log2
3
log29-log2
3
-20130

(Ⅱ)设函数f(x)是定义在R上的偶函数,且f(x)=f(x-2),当x∈[0,1]时,f(x)=x+1,求f(
3
2
)
的值.

查看答案和解析>>

科目: 来源: 题型:

已知等比数列{an}满足an+1+an=9×2n-1,n∈N*
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)令bn=2log2
an
3
+1,Sn是数列{
1
bnbn+1
}的前n项和,求证:Sn
1
2

查看答案和解析>>

科目: 来源: 题型:

选修4-5:不等式选讲
已知函数f(x)=|2x-1|+|2x+a|,g(x)=x+3.
(Ⅰ)当a=-2时,求不等式f(x)<g(x)的解集;
(Ⅱ)设a>-1,且当x∈[-
a
2
1
2
]
时,f(x)<g(x),求a的取值范围.

查看答案和解析>>

同步练习册答案