相关习题
 0  213571  213579  213585  213589  213595  213597  213601  213607  213609  213615  213621  213625  213627  213631  213637  213639  213645  213649  213651  213655  213657  213661  213663  213665  213666  213667  213669  213670  213671  213673  213675  213679  213681  213685  213687  213691  213697  213699  213705  213709  213711  213715  213721  213727  213729  213735  213739  213741  213747  213751  213757  213765  266669 

科目: 来源: 题型:

函数f(x)=mx2-2x+1有且仅有一个正实数的零点,求实数m的取值范围.

查看答案和解析>>

科目: 来源: 题型:

已知定义域为R的二次函数f(x)的最小值为0,且有f(1+x)=f(1-x),直线g(x)=4(x-1)的图象被f(x)的图象截得的弦长为4
17
,数列{an}满足a=2,(an+1-an)•g(an)+f(an)=0(n∈N*).
(1)求函数f(x)的解析式;
(2)求数列{an}的通项公式;
(3)设bn=3f(an)-g(an),求数列的{bn}的最值及相应的n.

查看答案和解析>>

科目: 来源: 题型:

从社会效益和经济效益出发,某地投入资金进行生态环境建设,并以此发展旅游产业.根据规划,本年度投入800万元,以后每年投入将比上年减少
1
5
,本年度当地旅游业收入估计为400万元,由于该项建设对旅游业的促进作用,预计今后的旅游业收入每年会比上年增加
1
4

(1)设n年内(本年度为第1年)总投人为an万元,旅游业总收入为bn万元,写出an,bn的表达式;
(2)至少经过几年,旅游业的总收人才能超过总投入?

查看答案和解析>>

科目: 来源: 题型:

已知数列{an}的前n项和为Sn,a=1,an+1=2Sn+1(n∈N*),等差数列{bn}中,bn>0(n∈N*),且b1+b2+b3=15,又a1+b1,a2+b2,a3+b3成等比数列.
(1)求数列{an},{bn}的通项公式;
(2)求数列{an•bn}的前n项和Tn

查看答案和解析>>

科目: 来源: 题型:

已知{an}是整数组成的数列,a=1,且点(
an
an+1
)(n∈N*)在函数y=
1
3
x3+x
的导函数的图象上.数列{bn}满足bn=
1
anan+1
(n∈N*),则数列{bn}的前n项和Sn=
 

查看答案和解析>>

科目: 来源: 题型:

已知
i
j
是互相垂直的单位向量,设
a
=4
i
+3
j
b
=3
i
-4
j
,则 
a
b
=
 

查看答案和解析>>

科目: 来源: 题型:

已知数列{an}的前n项和为Sn,且满足:an+2SnSn-1=0(n≥2,n∈N*),a=
1
2
,判断{
1
Sn
}
与{an}是否为等差数列,并说明你的理由.

查看答案和解析>>

科目: 来源: 题型:

甲、乙两容器中分别盛有浓度为10%,20%的某种溶液500ml,同时从甲、乙两个容器中各取出l00ml溶液,将其倒入对方的容器搅匀,称为一次调和.经n-1(n≥2,n∈N*)次调和后甲、乙两个容器中的溶液浓度分别为an,bn.记a1=10%,b1=20%.
(1)试用an-1,bn-1表示an,bn
(2)求证:数列{an-bn}是等比数列,数列{an+bn}是常数列;
(3)求数列{an},{bn}的通项公式.

查看答案和解析>>

科目: 来源: 题型:

为了加强环保建设,提高社会效益和经济效益,郑州市计划用若干年更换l0 000辆燃油型公交车,每更换一辆新车,则淘汰一辆旧车,更换的新车为电力型车和混合动力型车.今年初投入了电力型公交车l28辆,混合动力型公交车400辆,计划以后电力型车每年的投入量比上一年增加50%,混合动力型车每年比上一年多投入a辆.
(1)求经过n年,该市被更换的公交车总数S(n);
(2)若该市计划用7年的时间完成全部更换,求a的最小值.

查看答案和解析>>

科目: 来源: 题型:

若数列{an}满足a1=1,an+1=anan,则数列{an}的通项公式an=
 

查看答案和解析>>

同步练习册答案