科目: 来源: 题型:
设二次函数
,对任意实数
,有
恒成立;数列
满足
.
(1)求函数
的解析式和值域;
(2)证明:当
时,数列
在该区间上是递增数列;
(3)已知
,是否存在非零整数
,使得对任意
,都有
![]()
恒成立,若存在,求之;若不存在,说明理由.
查看答案和解析>>
科目: 来源: 题型:
已知函数
为奇函数.
(1)求常数
的值;
(2)判断函数的单调性,并说明理由;
(3)函数
的图象由函数
的图象先向右平移2个单位,再向上平移2个单位得到,写出
的一个对称中心,若
,求
的值。
查看答案和解析>>
科目: 来源: 题型:
由函数
确定数列
,
.若函数
能确定数列
,
,则称数列
是数列
的“反数列”.
(1)若函数
确定数列
的反数列为
,求
;
(2)对(1)中的
,不等式
对任意的正整数
恒成立,求实数
的取值范围;
(3)设
(
为正整数),若数列
的反数列为
,
与
的公共项组成的数列为
(公共项
为正整数),求数列
的前
项和
.
查看答案和解析>>
科目: 来源: 题型:
已知函数
,![]()
(1) 若
是常数,问当
满足什么条件时,函数
有最大值,并求出
取最大值时
的值;
(2) 是否存在实数对
同时满足条件:(甲)
取最大值时
的值与
取最小值的
值相同,(乙)
?
(3) 把满足条件(甲)的实数对
的集合记作A,设
,求使
的
的取值范围。
查看答案和解析>>
科目: 来源: 题型:
上海某化学试剂厂以x 千克/小时的速度生产某种产品(生产条件要求
),为了保证产品的质量,需要一边生产一边运输,这样按照目前的市场价格,每小时可获得利润是
元.
(1)要使生产运输该产品2小时获得的利润不低于3000元,求x的取值范围;
(2)要使生产运输900千克该产品获得的利润最大,问:该工厂应该选取何种生产速度?并求最大利润.
查看答案和解析>>
科目: 来源: 题型:
如图,正三棱柱ABC—A1B1C1的各棱长都相等,M、E分别是
和AB1的中点,点F在BC上且满足BF∶FC=1∶3.
(1)求证:BB1∥平面EFM;
(2)求四面体
的体积。
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com