科目: 来源: 题型:
已知定义在R上的函数f(x)和数列{an}满足下列条件:
a1=a,an=f(aa-1)(n=2,3,4,…),a2≠a1,f(an)-f(an-1)=k(an-an-1)(n=2,3,4,…),其中a为常数,k为非零常
数.
(Ⅰ)令bn=aa+1-an(n∈N*),证明数列{bn}是等比数列;
(Ⅱ)求数列{an}的通项公式
;
(Ⅲ)当|k|<1时,求![]()
查看答案和解析>>
科目: 来源: 题型:
已知数列{an}的前n项和Sn=a[2-(
)n-1]-b[2-(n+1)(
)n-1](n=1,2,…),其中a,b是非零常数,则存在数列{xn}、{yn}使得( )
A.an=xn+yn,其中{xn}为等差数列,{yn}为等比数列
B.an=xn+yn,其中{xn}和{yn}都为等差数列
C.an=xn·yn,其中{xn}为等差数列,{yn}为等比数列
D.an=xn·yn,其中{xn}和{yn}都为等比数列
查看答案和解析>>
科目: 来源: 题型:
若{an}是等差数列,首项a1>0,a2003+a2004>0,a2003·a2004<0,则使前n项和Sn>0成立的最大自然数n是 ( )
A.4005 B.4006 C.4007 D.4008
查看答案和解析>>
科目: 来源: 题型:
假设某市:2004年新建住房400万平方米,其中有250万平方米是中低价房.预计在今后的若干年内,该市每年新建住房面积平均比上一年增长8%.另外,每年新建住房中,中低价房的面积均比上一年增加50万平方米.那么,到哪一年底,
(1)该市历年所建中低价房的累计面积(以2004年为累计的第一年)将首次不少于4750万平方米?
(2)当年建造的中低价房的面积占该年建造住房面积的比例首次大于85%?
(3)设几年后新建住房面积S为:400(1+8%)n. 85%<25n2+225n.
查看答案和解析>>
科目: 来源: 题型:
已知函数f(x)=
设数列{an}满足a1=1,an+1=f(an),数列{bn}满足bn=|an-
|,Sn=b1+b2+…+bn(n∈N*).
(Ⅰ)用数学归纳法证明bn≤
;
(Ⅱ)证明Sn<
.
查看答案和解析>>
科目: 来源: 题型:
如图,直线l1:y=kx+1-k(k≠0,k≠
)与l2相交于点P.直线l1与x轴交于点P1,过点P1作x轴的垂线交于直线l2于点Q1,过点Q1作y轴的垂线交直线l1于点P2,过点P2作x轴的垂线交直线l2于点Q2,…这样一直作下去,可得到一系列点P1,Q1,P2,Q2,…点Pn(n=1,2,…)的横坐标构成数列{xn}.
![]()
(Ⅰ)证明xn+1-1=
(xn-1),(n∈N*);
(Ⅱ)求数列{xn}的通项公式;
(Ⅲ)比较2|PPn|2与4k2|PP1|2+5的大小.
查看答案和解析>>
科目: 来源: 题型:
如图,△OBC的三个顶点坐标分别为(0,0)、(1,0)、(0,2),设P1为线段BC的中点,P2为线段CO的中点,P3为线段OP1的中点,对于每一个正整数n,Pn+3为线段PnPn+1的中点,令Pn的坐标为(xn,yn),an=
yn+yn+1+yn+2.
![]()
(Ⅰ)求a1,a2,a3及an;
(Ⅱ)证明yn+4=1-
,n∈N*,
(Ⅲ)若记bn=y4n+4-y4n,n∈N*,证明{bn}是等比数列.
查看答案和解析>>
科目: 来源: 题型:
已知数列{an}是首项为a且公比q不等于1的等比数列,Sn是其前n项和,a1,2a7,3a4成等差数列.
(Ⅰ) 证明12S3,S6,S12-S6成等比数列;
(Ⅱ)求和Tn=a1+2a4+3a7+…+na3n-2.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com