科目: 来源: 题型:
如图10-11,四棱锥P—ABCD的底面是正方形,PA⊥底面ABCD,AE⊥PD,EF∥CD,AM=EF。
(1)证明MF是异面直线AB与PC的公垂线;
(2)若PA=3AB,求直线AC与平面EAM所成角的正弦值。
查看答案和解析>>
科目: 来源: 题型:
如图10-4所示,在正三棱锥A—BCD中,∠BAC=30°,AB=a,平行于AD、BC的截面EFGH分别交AB、BD、DC、CA于E、F、G、H。
(1)判定四边形EFGH的形状,并说明理由;
(2)设P是棱AD上的点,当AP为何值时,平面PBC⊥平面EFGH,请给出证明。
![]()
查看答案和解析>>
科目: 来源: 题型:
如图10-22,在正三棱柱ABC—A1B1C1中,AB=3,AA1=4,M为AA1的中点,P是BC上一点,且由P沿棱柱侧面经过棱CC1到M的最短路线长为
,设这条最短路线与CC1的交点为N。
![]()
求:(1)该三棱柱侧面展开图的对角线长;
(2)PC与NC的长;
(3)平面NMP与平面ABC所成二面角(锐角)的大小(用反三角函数表示)。
查看答案和解析>>
科目: 来源: 题型:
如图10-15,在
棱长为4的正方体ABCD—A1B1C1D1中,O是正方形A1B1C1D1的中心,点P在棱CC1上,且CC1=4CP。
![]()
(1)求直线AP与平面BCC1B1所成角的大小(结果用反三角表示);
(2)设O点在平面D1AP上的射影为H,求证:D1H⊥AP;
(3)求点P到平面ABD1的距离。
查看答案和解析>>
科目: 来源: 题型:
在长方体ABCD—A1B1C1D1中,已知AB=4,AD=3,AA1=2,E、F分别是线段AB、BC上的点,且EB=FB=1。
(1)求二面角C—DE—C1的正切值
(2)求直线EC1与FD1所成角的余弦值。
查看答案和解析>>
科目: 来源: 题型:
如图10-8,在三棱锥S—ABC中,△ABC是边长为4的正三角形,平面SAC⊥平面ABC,SA=SC=2
,M、N分别为AB、SB的中点。
(1)证明:AC⊥SB;
(2)求二面角N—CM—B的大小;
(3)求点B到平面CMN的距离。
查看答案和解析>>
科目: 来源: 题型:
下列五个正方体图形中,l是正方体的一条对角线,点M、N、P分别为其所在棱的中点,能得出l⊥面MNP的图形的序号是_________.(写出所有符合要求的图形序号)
![]()
查看答案和解析>>
科目: 来源: 题型:
如图,在四棱锥P-ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点,作EF⊥PB于点F.
(1)证明:PA//平面EDB;
(2)证明:BP⊥平面EFD;
(3)求二面角C—PD—D的大小.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com