科目: 来源: 题型:
在平面直角坐标系xOy中,已知点A(-1,1),P是动点,且△POA的三边所在直线的斜率满足kOP+kOA=kPA.
(1) 求点P的轨迹C的方程;
(2) 若Q是轨迹C上异于点P的一个点,且
=λ
,直线OP与QA交于点M,问:是否存在点P,使得△PQA和△PAM的面积满足S△PQA=2S△PAM?若存在,求出点P的坐标;若不存在,说明理由.
![]()
查看答案和解析>>
科目: 来源: 题型:
已知椭圆C的方程为
+
=1(a>b>0),双曲线
-
=1的两条渐近线为l1、l2,过椭圆C的右焦点F作直线l,使l⊥l1.又l与l2交于P点,设l与椭圆C的两个交点由上至下依次为A、B(如图).
![]()
(1) 当l1与l2夹角为60°,双曲线的焦距为4时,求椭圆C的方程;
(2) 当
=λ
,求λ的最大值.
查看答案和解析>>
科目: 来源: 题型:
已知椭圆C:
=1(a>b>0)的离心率e=
,一条准线方程为x=![]()
(1) 求椭圆C的方程;
(2) 设G、H为椭圆C上的两个动点,O为坐标原点,且OG⊥OH.
① 当直线OG的倾斜角为60°时,求△GOH的面积;
② 是否存在以原点O为圆心的定圆,使得该定圆始终与直线GH相切?若存在,请求出该定圆方程;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
已知抛物线x2=4y的焦点为F,过焦点F且不平行于x轴的动直线交抛物线于A、B两点,抛物线在A、B两点处的切线交于点M.
![]()
(1) 求证:A、M、B三点的横坐标成等差数列;
(2) 设直线MF交该抛物线于C、D两点,求四边形ACBD面积的最小值.
查看答案和解析>>
科目: 来源: 题型:
已知曲线C上动点P(x,y)到定点F1(
,0)与定直线l1∶x=
的距离之比为常数
.
(1) 求曲线C的轨迹方程;
(2) 以曲线C的左顶点T为圆心作圆T:(x+2)2+y2=r2(r>0),设圆T与曲线C交于点M与点N,求
·
的最小值,并求此时圆T的方程.
查看答案和解析>>
科目: 来源: 题型:
设A1、A2与B分别是椭圆E:
=1(a>b>0)的左、右顶点与上顶点,直线A2B与圆C:x2+y2=1相切.
(1) 求证:
+
=1;
(2) P是椭圆E上异于A1、A2的一点,若直线PA1、PA2的斜率之积为-
,求椭圆E的方程;
(3) 直线l与椭圆E交于M、N两点,且
=0,试判断直线l与圆C的位置关系,并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com