科目: 来源: 题型:
已知椭圆C:
=1(a>b>0)经过点M(-2,-1),离心率为
.过点M作倾斜角互补的两条直线分别与椭圆C交于异于M的另外两点P、Q.
(1) 求椭圆C的方程;
(2) 试判断直线PQ的斜率是否为定值,证明你的结论.
查看答案和解析>>
科目: 来源: 题型:
已知椭圆
=1(a>b>0)的离心率为
,且过点P
,A为上顶点,F为右焦点.点Q(0,t)是线段OA(除端点外)上的一个动点,过Q作平行于x轴的直线交直线AP于点M,以QM为直径的圆的圆心为N.
(1) 求椭圆方程;
(2) 若圆N与x轴相切,求圆N的方程;
(3) 设点R为圆N上的动点,点R到直线PF的最大距离为d,求d的取值范围.
![]()
查看答案和解析>>
科目: 来源: 题型:
如图,正方形ABCD内接于椭圆
=1(a>b>0),且它的四条边与坐标轴平行,正方形MNPQ的顶点M、N在椭圆上,顶点P、Q在正方形的边AB上,且A、M都在第一象限.
(1) 若正方形ABCD的边长为4,且与y轴交于E、F两点,正方形MNPQ的边长为2.
① 求证:直线AM与△ABE的外接圆相切;
② 求椭圆的标准方程;
(2) 设椭圆的离心率为e,直线AM的斜率为k,求证:2e2-k是定值.
查看答案和解析>>
科目: 来源: 题型:
如图,在平面直角坐标系xOy中,已知F1,F2分别是椭圆E:
=1(a>b>0)的左、右焦点,A,B分别是椭圆E的左、右顶点,且
=0.
(1) 求椭圆E的离心率;
(2) 已知点D(1,0)为线段OF2的中点,M为椭圆E上的动点(异于点A、B),连结MF1并延长交椭圆E于点N,连结MD、ND并分别延长交椭圆E于点P、Q,连结PQ,设直线MN、PQ的斜率存在且分别为k1、k2,试问是否存在常数λ,使得k1+λk2=0恒成立?若存在,求出λ的值;若不存在,说明理由.
![]()
查看答案和解析>>
科目: 来源: 题型:
如图,已知椭圆
=1(a>b>0)的离心率为
,且过点A(0,1).
(1) 求椭圆的方程;
(2) 过点A作两条互相垂直的直线分别交椭圆于点M、N,求证:直线MN恒过定点P
.
查看答案和解析>>
科目: 来源: 题型:
已知曲线C:(5-m)x2+(m-2)y2=8(m∈R).
(1) 若曲线C是焦点在x轴上的椭圆,求m的取值范围;
(2) 设m=4,曲线C与y轴的交点为A,B(点A位于点B的上方),直线y=kx+4与曲线C交于不同的两点M,N,直线y=1与直线BM交于点G.求证:A,G,N三点共线.
查看答案和解析>>
科目: 来源: 题型:
已知椭圆C:
=1(a>b>0),点A、B分别是椭圆C的左顶点和上顶点,直线AB与圆G:
(c是椭圆的半焦距)相离,P是直线AB上一动点,过点P作圆G的两切线,切点分别为M、N.
(1) 若椭圆C经过两点
,求椭圆C的方程;
(2) 当c为定值时,求证:直线MN经过一定点E,并求
的值(O是坐标原点);
(3) 若存在点P使得△PMN为正三角形,试求椭圆离心率的取值范围.
![]()
查看答案和解析>>
科目: 来源: 题型:
已知椭圆的中心为坐标原点O,椭圆短半轴长为1,动点M(2,t)(t>0)在直线x=
(a为长半轴,c为半焦距)上.
(1) 求椭圆的标准方程;
(2) 求以OM为直径且被直线3x-4y-5=0截得的弦长为2的圆的方程;
(3) 设F是椭圆的右焦点,过点F作OM的垂线与以OM为直径的圆交于点N,求证:线段ON的长为定值,并求出这个定值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com