科目: 来源: 题型:
如图所示,正方体ABCD-A1B1C1D1的棱长是1,过A点作平面A1BD的垂线,垂足为点H,有下列三个命题:
①点H是△A1BD的中心;
②AH垂直于平面CB1D1;
③AC1与B1C所成的角是90°.
其中正确命题的序号是________.
![]()
查看答案和解析>>
科目: 来源: 题型:
已知l,m,n为三条不同的直线,α为一个平面,给出下列命题:
①若l⊥α,则l与α相交;
②若m⊂α,n⊂α,l⊥m,l⊥n,则l⊥α;
③若l∥m,m∥n,l⊥α,则n⊥α;
④若l∥m,m⊥α,n⊥α,则l∥n.
其中正确命题的序号为________.
查看答案和解析>>
科目: 来源: 题型:
如图,在正方体ABCD-A1B1C1D1中,点P在侧面BCC1B1
及其边界上运动,并且总保持AP⊥BD1,则动点P的轨迹是( )
A.线段B1C
B.线段BC1
C.BB1中点与CC1中点连成的线段
D.BC中点与B1C1中点连成的线段
![]()
查看答案和解析>>
科目: 来源: 题型:
如图,长方体ABCD-A1B1C1D1中,底面A1B1C1D1是正方形,O是BD的中点,E是棱AA1上任意一点.
(1)证明:BD⊥EC1;
(2)如果AB=2,AE=
,OE⊥EC1,求AA1的长
.
![]()
查看答案和解析>>
科目: 来源: 题型:
(2011·高考课标全国卷)如图
,四棱锥P
-ABCD中,底面ABCD为平行四边形,∠DAB=60°,AB=2AD,PD⊥底面ABCD. ![]()
(1)证明:PA⊥BD;
(2)设PD=AD=1,求棱锥D-PBC的高.
查看答案和解析>>
科目: 来源: 题型:
如图所示,在四棱锥P-ABCD中,PA⊥底面ABCD,且底面各边
都相等,M是PC上的一动点,当点M满足__________时,平面MBD⊥平面PCD.(只要填写一个你认为是正确的条件即可) ![]()
查看答案和解析>>
科目: 来源: 题型:
已知a、b是两条不重合的直线,α、β、γ是三个两两不重合的平面,给出下列四个命题:
①若a⊥α,a⊥β,则α∥β;
②若α⊥γ,β⊥γ,则α∥β;
③若α∥β,a⊂α,b⊂β,则a∥b;
④若α∥β,α∩γ=a,β∩γ=b,则a∥b.
其中正确命题的序号有________.
查看答案和解析>>
科目: 来源: 题型:
设平面α与平面β相交于直线m,直线a在平面α内,直线b在平面β内,且b⊥m,则“α⊥β”是“a⊥b”的( )
A.充分不必要条件
B.必要不充分条件
C.充分必要条件
D.既不充分也不必要条件
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com