科目: 来源: 题型:
已知抛物线C:y2=2px(p>0)过点A(1,-2).
(1)求抛物线C的方程,并求其准线方程.
(2)是否存在平行于OA(O为坐标原点)的直线l,使得直线l与抛物线C有公共点,且直线OA与l的距离等于
?若存在,求出直线l的方程;若不存在,说明理由.
查看答案和解析>>
科目: 来源: 题型:
如图所示,在直角坐标系xOy中,点P
到抛物线C:y2=2px(p>0)的准线的距离为
.点M(t,1)是C上的定点,A,B是C上的两动点,且线段AB被直线OM平分.
![]()
(1)求p,t的值;
(2)求△ABP面积的最大值.
查看答案和解析>>
科目: 来源: 题型:
如图,等边三角形OAB的边长为8
,且其三个顶点均在抛物线E:x2=2py
(p>0)上.
![]()
(1)求抛物线E的方程;
(2)设动直线l与抛物线E相切于点P,与直线y=-1相交于点Q,证明以PQ为直径的圆恒过y轴上某定点.
查看答案和解析>>
科目: 来源: 题型:
已知抛物线C顶点为原点,其焦点F(0,c)(c>0)到直线l:x-y-2=0的距离为
,设P为直线l上的点,过点P作抛物线C的两条切线PA,PB,其中A,B为切点.
(1)求抛物线C的方程;
(2)当点P(x0,y0)为直线l上的定点时,求直线AB的方程;
(3)当点P在直线l上移动时,求|AF|·|BF|的最小值.
查看答案和解析>>
科目: 来源: 题型:
如图所示,抛物线C1:x2=4y,C2:x2=-2py(p>0).点M(x0,y0)在抛物线C2上,过M作C1的切线,切点为A,B(M为原点O时,A,B重合于O).当x0=1-
时,切线MA的斜率为-
.
![]()
(1)求p的值;
(2)当M在C2上运动时,求线段AB中点N的轨迹方程(A,B重合于O时,中点为O).
查看答案和解析>>
科目: 来源: 题型:
已知抛物线C的顶点为O(0,0),焦点为F(0,1).
![]()
(1)求抛物线C的方程;
(2)过点F作直线交抛物线C于A,B两点,若直线AO,BO分别交直线l:y=x-2于M,N两点,求|MN|的最小值.
查看答案和解析>>
科目: 来源: 题型:
(2009年大纲全国卷Ⅱ,文11)已知直线y=k(x+2)(k>0)与抛物线C:y2=8x相交于A、B两点,F为C的焦点,若|FA|=2|FB|,则k等于( )
(A)
(B)
(C)
(D)![]()
查看答案和解析>>
科目: 来源: 题型:
设抛物线y2=8x的焦点为F,准线为l,P为抛物线上一点,PA⊥l,A为垂足,如果直线AF的斜率为-
,那么|PF|等于( )
(A)4
(B)8 (C)8
(D)16
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com