相关习题
 0  215641  215649  215655  215659  215665  215667  215671  215677  215679  215685  215691  215695  215697  215701  215707  215709  215715  215719  215721  215725  215727  215731  215733  215735  215736  215737  215739  215740  215741  215743  215745  215749  215751  215755  215757  215761  215767  215769  215775  215779  215781  215785  215791  215797  215799  215805  215809  215811  215817  215821  215827  215835  266669 

科目: 来源: 题型:


某商场有来自三个国家的进口奶制品,其中A国、B国、C国的奶制品分别有40种、10种、30种,现从中抽取一个容量为16的样本进行三聚氰胺检测,若采用分层抽样的方法抽取样本,则抽取来自B国的奶制品________种.

查看答案和解析>>

科目: 来源: 题型:


某初级中学有学生270人,其中一年级108人,二、三年级各81人,现要利用抽样方法抽取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系数抽样三种方案.使用简单随机抽样和分层抽样时,将学生按一、二、三年级依次统一编号为1,2,…,270;使用系统抽样时,将学生统一随机编号为1,2,…,270,并将整个编号依次分为10段.如果抽得号码有如下四种情况:

①7,34,61,88,115,142,169,196,223,250;

②5,9,100,107,111,121,180,195,200,265;

③11,38,65,92,119,146,173,200,227,254;

④30,57,84,111,138,165,192,219,246,270.

关于上述样本的下列结论中,正确的是(  )

A.②③都不能为系统抽样                B.②④都不能为分层抽样

C.①④都可能为系统抽样                D.①③都可能为分层抽样

查看答案和解析>>

科目: 来源: 题型:


当前,某城市正分批修建经济适用房以解决低收入家庭住房紧张问题.已知甲、乙、丙三个社区现分别有低收入家庭360户、270户、180户,若第一批经济适用房中有90套住房用于解决这三个社区中90户低收入家庭的住房问题,现采用分层抽样的方法决定各社区户数,则应从乙社区中抽取低收入家庭的户数为(  )

A.40  B.36  C.30  D.20

查看答案和解析>>

科目: 来源: 题型:


某校要从高一、高二、高三共2 012名学生中选取50名组成志愿团,若采用下面的方法选取,先用简单随机抽样的方法从2 012人中剔除12人,剩下的2 000人再按分层抽样的方法进行,则每人入选的概率(  )

A.都相等且为                     B.都相等且为

C.不会相等                             D.均不相等

查看答案和解析>>

科目: 来源: 题型:


某班共有学生54人,学号分别为1~54号,现根据学生的学号,用系统抽样的方法,抽取一个容量为4的样本,已知3号、29号、42号的同学在样本中,那么样本中还有一个同学的学号是(  )

A.10  B.16  C.53  D.32

查看答案和解析>>

科目: 来源: 题型:


某校高三一班有学生54人,二班有学生42人,现在要用分层抽样的方法从两个班抽出16人参加军训表演,则一班和二班分别被抽取的人数是(  )

A.8,8  B.10,6  C.9,7  D.12,4

查看答案和解析>>

科目: 来源: 题型:


现要完成下列3项抽样调查:

①从10盒酸奶中抽取3盒进行食品卫生检查.

②科技报告厅有32排,每排有40个座位,有一次报告会恰好坐满了听众.报告会结束后,为了听取意见,需要请32名听众进行座谈.

③东方中学共有160名教职工,其中一般教师120名,行政人员16名,后勤人员24名.为了了解教职工对学校在校务公开方面的意见,拟抽取一个容量为20的样本.

较为合理的抽样方法是(  )

A.①简单随机抽样,②系统抽样,③分层抽样

B.①简单随机抽样,②分层抽样,③系统抽样

C.①系统抽样,②简单随机抽样,③分层抽样

D.①分层抽样,②系统抽样,③简单随机抽样

查看答案和解析>>

科目: 来源: 题型:


已知A,B分别是椭圆C1: +=1的左、右顶点,P是椭圆上异于A,B的任意一点,Q是双曲线C2: - =1上异于A,B的任意一点,a>b>0.

(1)若P(,),Q(,1),求椭圆C1的方程;

(2)记直线AP,BP,AQ,BQ的斜率分别是k1,k2,k3,k4,求证:k1·k2+k3·k4为定值.

查看答案和解析>>

科目: 来源: 题型:


已知椭圆C1的中心在坐标原点,两个焦点分别为F1(-2,0),F2(2,0),点A(2,3)在椭圆C1上,过点A的直线L与抛物线C2:x2=4y交于B,C两点,抛物线C2在点B,C处的切线分别为l1,l2,且l1与l2交于点P.

(1)求椭圆C1的方程;

(2)是否存在满足|PF1|+|PF2|=|AF1|+|AF2|的点P?若存在,指出这样的点P有几个(不必求出点P的坐标);若不存在,说明理由.

查看答案和解析>>

科目: 来源: 题型:


已知双曲线-=1(a>0,b>0)的离心率为2,一个焦点与抛物线y2=16x的焦点相同,则双曲线的渐近线方程为(  )

(A)y=±x  (B)y=±x

(C)y=±x    (D)y=±x

查看答案和解析>>

同步练习册答案