数学英语物理化学 生物地理
数学英语已回答习题未回答习题题目汇总试卷汇总练习册解析答案
科目: 来源: 题型:
已知数列{an}满足a1=1,a2=-,从第二项起,{an}是以为公比的等比数列,{an}的前n项和为Sn,试问:S1,S2,S3…,Sn,…能否构成等比数列?为什么?
已知a+b+c,b+c-a,c+a-b,a+b-c成等比数列,且公比为q,求证:(1)q3+ q 2+q=1,(2)q=
数列{an}是正项等比数列,它的前n项和为80,其中数值最大的项为54,前2n项的和为6560,求它的前100项的和。
已知等比数列{an},公比为-2,它的第n项为48,第2n-3项为192,求此数列的通项公式。
某工厂在某年度之初借款A元,从该年度末开始,每年度偿还一定的金额,恰在n年内还清,年利率为r,则每次偿还的金额为 元。
2+(2+22)+(2+22+23)+…+(2+22+23+…+210)=
若2,a,b,c,d,18六个数成等比数列,则log9=
若数列{an}为等比数列,其中a3,a9是方程3x2+kx+7=0的两根,且(a3+a9)2=3a5a7+2,则实数k=
已知首项为,公比为q(q>0)的等比数列的第m,n,k项顺次为M,N,K,则(n-k)logM+(k-m)logN+(m-n)logK=
已知a>0,b>0,a在a与b之间插入n个正数x1,x2,…,xn,使a,x1,x2…,xn,b成等比数列,则=
国际学校优选 - 练习册列表 - 试题列表
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区