科目: 来源: 题型:
已知全集U={1,2,3,4,5,6,7,8},M={1,3,5,7},N={5,6,7},则∁U(M∪N)=( )
|
| A. | {5,7} | B. | {2,4} | C. | {2,4,8} | D. | {1,3,5,6,7} |
查看答案和解析>>
科目: 来源: 题型:
将圆x2+y2=4上各点的纵坐标压缩至原来的
,所得曲线记作C;将直线3x﹣2y﹣8=0绕原点逆时针旋转90°所得直线记作l.
(I)求直线l与曲线C的方程;
(II)求C上的点到直线l的最大距离.
查看答案和解析>>
科目: 来源: 题型:
如图,AB是⊙O的直径,AC是弦,直线CE和⊙O切于点C,AD丄CE,垂足为D.
(I) 求证:AC平分∠BAD;
(II) 若AB=4AD,求∠BAD的大小.
![]()
查看答案和解析>>
科目: 来源: 题型:
已知
,函数
.
(1)
时,写出
的增区间;
(2)记
在区间[0,6]上的最大值为
,求
的表达式;
(3)是否存在
,使函数
在区间(0,6)内的图象上存在两点,在该两点处的切线互相垂直?若存在,求
的取值范围;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
已知动圆
与圆
相切,且与圆
相内切,记圆心
的轨迹为曲线
;设
为曲线
上的一个不在
轴上的动点,
为坐标原点,过点
作
的平行线交曲线
于
两个不同的点.
(Ⅰ)求曲线
的方程;
(Ⅱ)试探究
和
的比值能否为一个常数?若能,求出这个常数,若不能,请说明理由;
(Ⅲ)记
的面积为
,
的面积为
,令
,求
的最大值.
查看答案和解析>>
科目: 来源: 题型:
随机询问某大学40名不同性别的大学生在购买食物时是否读营养说明,得到如下列联表: 性别与读营养说明列联表
| 男 | 女 | 总计 | |
| 读营养说明 | 16 | 8 | 24 |
| 不读营养说明 | 4 | 12 | 16 |
| 总计 | 20 | 20 | 40 |
⑴根据以上列联表进行独立性检验,能否在犯错误的概率不超过0.01的前提下认为性别与是否读营养说明之间有关系?
⑵从被询问的16名不读营养说明的大学生中,随机抽取2名学生,求抽到男生人数
的分布列及其均值(即数学期望).
(注:
,其中
为样本容量.)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com