科目: 来源: 题型:
如图所示的多面体是由底面为ABCD的长方体被截面AEC1F所截而得到的,其中AB=4,BC=2,CC1=3,BE=1.
![]()
(1)求BF的长;
(2)求点C到平面AEC1F的距离.
查看答案和解析>>
科目: 来源: 题型:
如图所示,四棱锥P-ABCD中,底面ABCD为正方形,PD⊥平面ABCD,PD=AB=2,E、F、G分别为PC、PD、BC的中点.
(1)求证:PA⊥EF;
(2)求二面角D-FG-E的余弦值.
查看答案和解析>>
科目: 来源: 题型:
在正方体ABCD-A1B1C1D1中,E是棱CC1的中点,F是正方形BCC1B1内的动点,且A1F∥平面D1AE,则A1F与平面BCC1B1所成角的正切值t构成的集合是( )
![]()
A.{t|
≤t≤2
} B.{t|
≤t≤2}
C.{t|2≤t≤2
} D.{t|2≤t≤2
}
查看答案和解析>>
科目: 来源: 题型:
.如图(一),在直角梯形ABCD中,AD∥BC,AB⊥AD,AD=2AB=2BC,E为AD中点,沿CE折叠,使平面DEC⊥平面ABCE,如图(二).
![]()
(1)证明:AC⊥BD
(2)求DE与平面ACD所成角的余弦值.
查看答案和解析>>
科目: 来源: 题型:
如图,在四棱锥P-ABCD中,底面ABCD为矩形,侧棱PA⊥底面ABCD,AB=
,BC=1,PA=2,E为PD的中点.
![]()
(1)求直线AC与PB所成角的余弦值;
(2)在侧面PAB内找一点N,使NE⊥平面PAC,并求出点N到AB和AP的距离.
查看答案和解析>>
科目: 来源: 题型:
如图,在斜三棱柱ABC-A1B1C1中,点O、E分别是A1C1、AA1的中点,AO⊥平面A1B1C1.已知∠BCA=90°,AA1=AC=BC=2.
![]()
(1)证明:OE∥平面AB1C1;
(2)求异面直线AB1与A1C所成的角;
(3)求A1C1与平面AA1B1所成角的正弦值.
查看答案和解析>>
科目: 来源: 题型:
如图,在多面体ABCDE中,AE⊥平面ABC,DB∥AE,且AC=AB=BC=AE=1,BD=2,F为CD中点.
![]()
(1)求证:EF⊥平面BCD;
(2)求多面体ABCDE的体积;
(3)求平面ECD和平面ACB所成的锐二面角的余弦值.
查看答案和解析>>
科目: 来源: 题型:
如图,三棱柱ABC-A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°.
![]()
(1)证明:AB⊥A1C;
(2)若平面ABC⊥平面AA1B1B,AB=CB=2,求直线A1C 与平面BB1C1C所成角的正弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com