科目: 来源: 题型:
已知F1,F2分别是双曲线
-
=1(a>0,b>0)的左、右焦点,P为双曲线上一点,若∠F1PF2=90°,且△F1PF2的三边长成等差数列,则双曲线的离心率是( )
A.2 B.3
C.4 D.5
查看答案和解析>>
科目: 来源: 题型:
已知双曲线T:
-
=1(a>0,b>0)的右焦点为F(2,0),且经过点R
,△ABC的三个顶点都在双曲线T上,O为坐标原点,设△ABC三条边AB,BC,AC的中点分别为M,N,P,且三条边所在直线的斜率分别为k1,k2,k3,ki≠0,i=1,2,3.若直线OM,ON,OP的斜率之和为-1,则
+
+
的值为( )
A.-1 B.-
C.1 D.![]()
查看答案和解析>>
科目: 来源: 题型:
设F1,F2为椭圆C1:
+
=1(a1>b1>0)与双曲线C2的公共的左、右焦点,它们在第一象限内交于点M,△MF1F2是以线段MF1为底边的等腰三角形,且|MF1|=2.若椭圆C1的离心率e∈
,则双曲线C2的离心率的取值范围是( )
![]()
![]()
查看答案和解析>>
科目: 来源: 题型:
已知两定点A(-2,0)和B(2,0),动点P(x,y)在直线l:y=x+3上移动,椭圆C以A,B为焦点且经过点P,则椭圆C的离心率的最大值为( )
A.
B.
C.
D.![]()
查看答案和解析>>
科目: 来源: 题型:
如图,从点M(x0,4)发出的光线,沿平行于抛物线y2=8x的对称轴方向射向此抛物线上的点P,经抛物线反射后,穿过焦点射向抛物线上的点Q,再经抛物线反射后射向直线l:x-y-10=0上的点N,经直线反射后又回到点M,则x0等于( )
![]()
A.5 B.6 C.7 D.8
查看答案和解析>>
科目: 来源: 题型:
已知双曲线
-
=1(a>0,b>0)的左、右焦点分别为F1,F2,点O为坐标原点,点P在双曲线右支上,△PF1F2内切圆的圆心为Q,圆Q与x轴相切于点A,过F2作直线PQ的垂线,垂足为B,则|OA|与|OB|的长度依次为( )
A.a,a B.a,
C.
,
D.
,a
查看答案和解析>>
科目: 来源: 题型:
已知正方形的四个顶点分别为O(0,0),A(1,0),B(1,1),C(0,1),点D,E分别在线段OC,AB上运动,且OD=BE,设AD与OE交于点G,则点G的轨迹方程是( )
A.y=x(1-x)(0≤x≤1)
B.x=y(1-y)(0≤y≤1)
C.y=x2(0≤x≤1)
D.y=1-x2(0≤x≤1)
查看答案和解析>>
科目: 来源: 题型:
如图,F1,F2是双曲线C1:x2-
=1与椭圆C2的公共焦点,点A是C1,C2在第一象限的公共点.若|F1F2|=|F1A|,则C2的离心率是( )
![]()
A.
B.![]()
C.
或
D.![]()
查看答案和解析>>
科目: 来源: 题型:
过椭圆
+
=1(a>b>0)的左顶点A作斜率为2的直线,与椭圆的另一个交点为B,与y轴的交点为C,已知![]()
(1)求椭圆的离心率;
(2)设动直线y=kx+m与椭圆有且只有一个公共点P,且与直线x=4相交于点Q,若x轴上存在一定点M(1,0),使得PM⊥QM,求椭圆的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com