科目: 来源: 题型:
设函数
的最小正周期为
,且其图象关于直线
对称, 则在下面四个结论:
①图象关于点
对称; ②图象关于点
对称;
③在
上是增函数; ④在
上是增函数中,
所有正确结论的编号为
查看答案和解析>>
科目: 来源: 题型:
对于函数
,如果存在实数
使得
,那么称
为
的生成函数.
(1)下面给出两组函数,
是否分别为
的生成函数?并说明理由;
第一组:
;
第二组:
;
(2)设
,生成函数
.若不等式
在
上有解,求实数
的取值范围;
(3)设
,取
,生成函数
图像的最低点坐标为
.若对于任意正实数
且
.试问是否存在最大的常数
,使
恒成立?如果存在,求出这个
的值;如果不存在,请说明理由.
![]()
查看答案和解析>>
科目: 来源: 题型:
已知函数
是奇函数,定义域为区间D(使表达式有意义的实数x 的集合).
(1)求实数m的值,并写出区间D;(2)若底数
,试判断函数
在定义域D内的单调性,并说明理由;
(3)当
(
,a是底数)时,函数值组成的集合为
,求实数
的值.
查看答案和解析>>
科目: 来源: 题型:
对于定义域为D的函数
,若同时满足下列条件:①
在D内单调递增或单调递减;②存在区间[
]
,使
在[
]上的值域为[
];那么把
(
)叫闭函数。
(Ⅰ)求闭函数
符合条件②的区间[
];(Ⅱ)判断函数
是否为闭函数?并说明理由;
(Ⅲ)若
是闭函数,求实数
的取值范围。
查看答案和解析>>
科目: 来源: 题型:
设函数的定义域为(0,+∞),且对任意正实数x,y都有f(x·y)=f(x)+f(y)恒成立,已知f(2)=1且x>1时f(x)>0.
(1)求
;(2)判断y=f(x)在(0,+ ∞)上的单调性;
(3)一个各项均为正数的数列
其中sn是数列
的前n项和,求
查看答案和解析>>
科目: 来源: 题型:
已知函数
,则关于
的方程
给出下列四个命题:
①存在实数
,使得方程恰有1个实根;②存在实数
,使得方程恰有2个不相等的实根;
③存在实数
,使得方程恰有3个不相等的实根;④存在实数
,使得方程恰有4个不相等的实根.
其中正确命题的序号是 (把所有满足要求的命题序号都填上).
查看答案和解析>>
科目: 来源: 题型:
已知点
是函数
的图像上任意不同两点,依据图
像可知,线段AB总是位于A、B两点之间函数图像的上方,因此有
结论
成立.运用类比思想方法可知,若点
是函数
的图像上的不同两点,则类似地有 成立.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com