相关习题
 0  218308  218316  218322  218326  218332  218334  218338  218344  218346  218352  218358  218362  218364  218368  218374  218376  218382  218386  218388  218392  218394  218398  218400  218402  218403  218404  218406  218407  218408  218410  218412  218416  218418  218422  218424  218428  218434  218436  218442  218446  218448  218452  218458  218464  218466  218472  218476  218478  218484  218488  218494  218502  266669 

科目: 来源: 题型:


已知函数

 (I)若函数的图象过原点,且在原点处的切线斜率是,求的值;

 (II)若函数区间不单调,求的取值范围.

查看答案和解析>>

科目: 来源: 题型:


设函数在两个极值点,且

(I)求满足的约束条件,并在下面的坐标平面内,画出满足这些条件的点的区域;

(II)证明:

查看答案和解析>>

科目: 来源: 题型:


已知二次函数的导函数的图像与直线平行,且处取得极小值.设

(1)若曲线上的点到点的距离的最小值为,求的值;

(2)如何取值时,函数存在零点,并求出零点.

查看答案和解析>>

科目: 来源: 题型:


解析    本题考查导数与函数的综合运用能力,涉及利用导数讨论函数的单调性,第一问关键是通过分析导函数,从而确定函数的单调性,第二问是利用导数及函数的最值,由恒成立条件得出不等式条件从而求出的范围。

解析     (I)

 由知,当时,,故在区间是增函数;

时,,故在区间是减函数;

 当时,,故在区间是增函数。

  综上,当时,在区间是增函数,在区间是减函数。

 (II)由(I)知,当时,处取得最小值。

由假设知

             即    解得  1<a<6

的取值范围是(1,6)

查看答案和解析>>

科目: 来源: 题型:


设函数,其中常数a>1

(Ⅰ)讨论f(x)的单调性;

(Ⅱ)若当x≥0时,f(x)>0恒成立,求a的取值范围。

查看答案和解析>>

科目: 来源: 题型:


解:  (1)由已知得,令,得,

要取得极值,方程必须有解,

所以△,即,   此时方程的根为

,,

所以

时,

x

(-∞,x1)

x 1

(x1,x2)

x2

(x2,+∞)

f’(x)

0

0

f (x)

增函数

极大值

减函数

极小值

增函数

所以在x 1, x2处分别取得极大值和极小值.

时,

x

(-∞,x2)

x 2

(x2,x1)

x1

(x1,+∞)

f’(x)

0

0

f (x)

减函数

极小值

增函数

极大值

减函数

所以在x 1, x2处分别取得极大值和极小值.

综上,当满足时, 取得极值.

(2)要使在区间上单调递增,需使上恒成立.

恒成立,  所以

,,

(舍去),

时,,当,单调增函数;

,单调减函数,

所以当时,取得最大,最大值为.

所以

时,,此时在区间恒成立,所以在区间上单调递增,当最大,最大值为,所以

综上,当时, ;    当时,

查看答案和解析>>

科目: 来源: 题型:


    已知函数,其中

(1)当满足什么条件时,取得极值?

(2)已知,且在区间上单调递增,试用表示出的取值范围.

查看答案和解析>>

科目: 来源: 题型:


曲线在点(0,1)处的切线方程为                。

查看答案和解析>>

科目: 来源: 题型:


是已知平面上所有向量的集合,对于映射,记的象为。若映射满足:对所有及任意实数都有,则称为平面上的线性变换。现有下列命题:

①设是平面上的线性变换,,则

②若是平面上的单位向量,对,则是平面上的线性变换;

③对,则是平面上的线性变换;

④设是平面上的线性变换,,则对任意实数均有

其中的真命题是                     (写出所有真命题的编号)

查看答案和解析>>

科目: 来源: 题型:


设曲线在点(1,1)处的切线与x轴的交点的横坐标为,令,则的值为                .

查看答案和解析>>

同步练习册答案