科目: 来源:2014-2015学年江苏高考南通密卷二数学试卷(解析版) 题型:解答题
(本小题满分14分)如图,在斜三棱柱
中,侧面
是边长为
的菱形,
.在面
中,
,
,
为
的中点,过
三点的平面交
于点
.
![]()
(1)求证:
为
中点;
(2)求证:平面
平面
.
查看答案和解析>>
科目: 来源:2014-2015学年江苏高考南通密卷二数学试卷(解析版) 题型:解答题
(本小题满分14分)某商场为促销要准备一些正三棱锥形状的装饰品,用半径为
的圆形包装纸包装.要求如下:正三棱锥的底面中心与包装纸的圆心重合,包装纸不能裁剪,沿底边向上翻折,其边缘恰好达到三棱锥的顶点,如图所示.设正三棱锥的底面边长为
,体积为
.
![]()
(1)求
关于
的函数关系式;
(2)在所有能用这种包装纸包装的正三棱锥装饰品中,
的最大值是多少?并求此时
的值.
查看答案和解析>>
科目: 来源:2014-2015学年江苏高考南通密卷二数学试卷(解析版) 题型:解答题
(本小题满分16分)已知椭圆
的离心率为
,并且椭圆经过点
,过原点
的直线
与椭圆
交于
两点,椭圆上一点
满足
.
![]()
(1)求椭圆
的方程;
(2)证明:
为定值;
(3)是否存在定圆,使得直线
绕原点
转动时,
恒与该定圆相切,若存在,求出该定圆的方程,若不存在,说明理由.
查看答案和解析>>
科目: 来源:2014-2015学年江苏高考南通密卷二数学试卷(解析版) 题型:解答题
(本小题满分16分)
已知数列
是等差数列,
是等比数列,且满足
,
.
(1)若
,
.
①当
时,求数列
和
的通项公式;
②若数列
是唯一的,求
的值;
(2)若
,
,
均为正整数,且成等比数列,求数列
的公差
的最大值.
查看答案和解析>>
科目: 来源:2014-2015学年江苏高考南通密卷二数学试卷(解析版) 题型:解答题
(本小题满分16分)设函数
有且仅有两个极值点
.
(1)求实数
的取值范围;
(2)是否存在实数
满足
?如存在,求
的极大值;如不存在,请说明理由.
查看答案和解析>>
科目: 来源:2014-2015学年江苏高考南通密卷二数学试卷(解析版) 题型:解答题
(选修4-1:几何证明选讲)
如图,AD是∠BAC的平分线,圆O过点A且与边BC相切于点D,与边AB、AC分别交于点E、F,求证:EF∥BC.
![]()
查看答案和解析>>
科目: 来源:2014-2015学年江苏高考南通密卷二数学试卷(解析版) 题型:解答题
(选修4-4:坐标系与参数方程)
在极坐标系中,圆
是以点
为圆心,
为半径的圆.
(1)求圆
的极坐标方程;
(2)求圆
被直线
所截得的弦长.
查看答案和解析>>
科目: 来源:2014-2015学年江苏高考南通密卷二数学试卷(解析版) 题型:填空题
(本小题满分10分)直三棱柱
中,已知
,
,
,
.
是
的中点.
![]()
(1)求直线
与平面
所成角的正弦值;
(2)求二面角
的大小的余弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com