科目: 来源: 题型:
已知椭圆C过点
,点F(-
,0)是椭圆的左焦点,点P,Q是椭圆C上的两个动点,且|PF|,|MF|,|QF|成等差数列.
(1)求椭圆C的标准方程;
(2)求证:线段PQ的垂直平分线经过一个定点A.
查看答案和解析>>
科目: 来源: 题型:
已知椭圆
+
=1(a>b>0)的离心率为
,且过点(2,
).
(1)求椭圆的标准方程;
(2)四边形ABCD的顶点在椭圆上,且对角线AC,BD过原点O,若kAC·kBD=-
.
求证:四边形ABCD的面积为定值.
查看答案和解析>>
科目: 来源: 题型:
设椭圆E:
=1的焦点在x轴上.
(1)若椭圆E的焦距为1,求椭圆E的方程.
(2)设F1,F2分别是椭圆的左、右焦点,P为椭圆E上的第一象限内的点,直线F2P交y轴于点Q,并且F1P⊥F1Q,证明:当a变化时,点P在某定直线上.
查看答案和解析>>
科目: 来源: 题型:
已知椭圆C:
+
=1(a>b>0)经过点M
,其离心率为
.
(1)求椭圆C的方程;
(2)设直线l:y=kx+m(|k|≤
)与椭圆C相交于A,B两点,以线段OA,OB为邻边作平行四边形OAPB,其中顶点P在椭圆C上,O为坐标原点.求|OP|的取值范围.
查看答案和解析>>
科目: 来源: 题型:
已知对称中心为坐标原点的椭圆C1与抛物线C2:x2=4y有一个相同的焦点F1,直线l:y=2x+m与抛物线C2只有一个公共点.
(1)求直线l的方程;
(2)若椭圆C1经过直线l上的点P,当椭圆C1的离心率取得最大值时,求椭圆C1的方程及点P的坐标.
查看答案和解析>>
科目: 来源: 题型:
已知椭圆C:
+
=1(a>b>0)的离心率为
,椭圆C的短轴的一个端点P到焦点的距离为2.
(1)求椭圆C的方程;
(2)已知直线l:y=kx+
与椭圆C交于A,B两点,是否存在k使得以线段AB为直径的圆恰好经过坐标原点O?若存在,求出k的值;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
如图,椭圆长轴的端点为A,B,O为椭圆的中心,F为椭圆的右焦点,且
,
.
(1)求椭圆的标准方程;
(2)记椭圆的上顶点为M,直线l交椭圆于P,Q两点,问:是否存在直线l,使点F恰为△PQM的垂心,若存在,求出直线l的方程;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
已知直线l:y=x+
,圆O:x2+y2=5,椭圆E:
+
=1(a>b>0)的离心率e=
,直线l被圆O截得的弦长与椭圆的短轴长相等.
(1)求椭圆E的方程;
(2)过圆O上任意一点P作椭圆E的两条切线,若切线都存在斜率,求证:两切线斜率之积为定值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com