相关习题
 0  21826  21834  21840  21844  21850  21852  21856  21862  21864  21870  21876  21880  21882  21886  21892  21894  21900  21904  21906  21910  21912  21916  21918  21920  21921  21922  21924  21925  21926  21928  21930  21934  21936  21940  21942  21946  21952  21954  21960  21964  21966  21970  21976  21982  21984  21990  21994  21996  22002  22006  22012  22020  266669 

科目: 来源:北京高考真题 题型:解答题

如图,已知正三棱柱ABC-A1B1C1底面边长为3,AA1=,D为CB延长线上一点,且BD=BC。
(1)求证:直线BC1∥面AB1D;
(2)求二面角B1-AD-B的大小;
(3)求三棱锥C1-ABB1的体积。

查看答案和解析>>

科目: 来源:专项题 题型:解答题

如图,平面α⊥平面β,α∩β=直线l,A,C是α内不同的两点,B,D是β 内不同的两点,且A,B,C,D直线l,M,N分别是线段AB,CD的中点,下列判断正确的是
[     ]
A.当|CD|=2|AB|时,M,N两点不可能重合
B.当|CD|=2|AB|时,线段AB,CD在平面α上正投影的长度不可能相等
C.M,N两点可能重合,但此时直线AC与l不可能相交
D.当AB与CD相交,直线AC平行于l时,直线BD可以与l相交

查看答案和解析>>

科目: 来源:专项题 题型:解答题

如图甲,在直角梯形ABCP中,BC∥AP,AB⊥BC,CD⊥AP,AD=DC=PD=2,E,F,G分别是PC,PD,BC的中点,现将△PDC沿CD折起,使平面PDC⊥平面ABCD(如图乙)。
(1)求证:AP∥平面EFG;
(2)当Q点落在PB中点时,求DC与平面ADQ所成角的大小。

查看答案和解析>>

科目: 来源:北京模拟题 题型:解答题

如图,已知菱形ABCD的边长为6,∠BAD=60°,AC∩BD=O,将菱形ABCD沿对角线AC折起,得到三棱锥B-ACD,点M是棱BC的中点,DM=3
(1)求证:OM∥平面ABD;
(2)求证:平面ABC⊥平面MDO;
(3)求三棱锥M-ABD的体积。

查看答案和解析>>

科目: 来源:北京模拟题 题型:证明题

如图,在直三棱柱ABC-A1B1C1中,AB=AC,D,E分别为BC,BB1的中点,四边形B1BCC1是正方形。
(1)求证:A1B∥平面AC1D;
(2)求证:CE⊥平面AC1D。

查看答案和解析>>

科目: 来源:安徽省模拟题 题型:证明题

如图,四边形ABCD为正方形,四边形BDEF为矩形,AB=2BF,DE⊥平面ABCD,G为EF中点。
(1)求证:CF∥平面ADE;
(2)求证:平面ABG⊥平面CDG。

查看答案和解析>>

科目: 来源:河南省模拟题 题型:单选题

设a,b是两条不同的直线,α,β是两个不同的平面,则下列四个命题:
①若a⊥b,a⊥α,bα,则b∥α;②若a∥α,a⊥β,则α⊥β;
③若a⊥β,α⊥β,则a∥α或aα;④若a⊥b,a⊥α,b⊥β,则α⊥β;
其中正确命题的个数为
[     ]
A.1
B.2
C.3
D.4

查看答案和解析>>

科目: 来源:江苏模拟题 题型:证明题

如图,四棱锥P-ABCD的底面为矩形,且AB=BC,E、F分别为棱AB,PC的中点,
(Ⅰ)求证:EF∥平面PAD;
(Ⅱ)若点P在平面ABCD内的正投影O在直线AC上,求证:平面PAC⊥平面PDE。

查看答案和解析>>

科目: 来源:模拟题 题型:单选题

已知m,n是两条不同直线,α,β,γ是三个不同平面,下列命题中正确的是

[     ]

A.若m∥α,n∥α,则m∥n
B.若α⊥γ,β⊥γ,则α∥β
C.若m∥α,m∥β,则α∥β
D.若m⊥α,n⊥α,则m∥n

查看答案和解析>>

科目: 来源:江西省模拟题 题型:解答题

已知直角梯形ABCD中,AB∥CD,AB⊥BC,AB=1,BC=2,CD=1+,过A作AE⊥CD.垂足为E,G,F分别为AD,CE的中点,现将△ADE沿AE折叠,使得DE⊥EC,
(Ⅰ)求证:FG∥面BCD;
(Ⅱ)设四棱锥D-ABCE的体积为V,其外接球体积为V′,求V:V′的值。

查看答案和解析>>

同步练习册答案