相关习题
 0  224140  224148  224154  224158  224164  224166  224170  224176  224178  224184  224190  224194  224196  224200  224206  224208  224214  224218  224220  224224  224226  224230  224232  224234  224235  224236  224238  224239  224240  224242  224244  224248  224250  224254  224256  224260  224266  224268  224274  224278  224280  224284  224290  224296  224298  224304  224308  224310  224316  224320  224326  224334  266669 

科目: 来源: 题型:选择题

5.设有直线M、n和平面α、β.则下列结论中正确的是(  )
①若M∥n,n⊥β,M?α,则α⊥β;
②若M⊥n,α∩β=M,n?α,则α⊥β;
③若M⊥α,n⊥β,M⊥n,则α⊥β.
A.①②B.①③C.②③D.①②③

查看答案和解析>>

科目: 来源: 题型:填空题

4.在△ABC中,若tan$\frac{A}{2}$•tan$\frac{B}{2}$=$\frac{1}{4}$,则tan$\frac{C}{2}$的最大值为$\frac{3}{4}$.

查看答案和解析>>

科目: 来源: 题型:填空题

3.已知向量$\overrightarrow{OA}$,$\overrightarrow{OB}$的夹角60°,|$\overrightarrow{OA}$|=2,|$\overrightarrow{OB}$|=2$\sqrt{3}$,$\overrightarrow{OP}$=λ$\overrightarrow{OA}$+μ$\overrightarrow{OB}$,若λ+$\sqrt{3}$μ=2,则|$\overrightarrow{OP}$|的最小值是2$\sqrt{3}$,此时$\overrightarrow{OP}$,$\overrightarrow{OA}$夹角大小为30°.

查看答案和解析>>

科目: 来源: 题型:解答题

2.在ABC中,角A、B、C所对应的边分别为a、b、c.
(1)若sin(A+$\frac{π}{6}$)=2cosA,求A的值;
(2)cosA=$\frac{1}{3}$,b=3c,求证:△ABC是直角三角形.

查看答案和解析>>

科目: 来源: 题型:填空题

1.某几何体的三视图如图所示,且该几何体的顶点都在球O的球面上,则球O的表面积为$\frac{28π}{3}$.

查看答案和解析>>

科目: 来源: 题型:填空题

20.圆x2+y2-4x-5=0的点到直线3x-4y+20=0的距离的最大值为$\frac{41}{5}$.

查看答案和解析>>

科目: 来源: 题型:选择题

19.下列命题正确的是(  )
A.在三角形ABC中,sinA>sinB,则边a>b
B.若对任意正整数n,有a2n+1=an•an+2,则数列{an}为等比数列
C.向量数量积$\overrightarrow{a}$•$\overrightarrow{b}$<0,则$\overrightarrow{a}$,$\overrightarrow{b}$夹角为钝角
D.x0为函数y=f(x)的极值点的充要条件是f′(x0)=0

查看答案和解析>>

科目: 来源: 题型:解答题

18.已知E,F,G,H分别是四边形ABCD四条边AB,CD,AD,BC的中点,求$\overrightarrow{AB}$+$\overrightarrow{BC}$+$\overrightarrow{AD}$+$\overrightarrow{DC}$=2($\overrightarrow{EF}$+$\overrightarrow{GH}$)

查看答案和解析>>

科目: 来源: 题型:填空题

17.已知下列命题:①要得到函数y=cos(x-$\frac{π}{6}$)的图象,需把函数y=sinx的图象上所有点向左平移$\frac{π}{3}$个单位长度;②函数f(x)=$\sqrt{2}$sin(2x+$\frac{π}{3}$)的图象关于直线x=$\frac{π}{3}$对称;③y=sinωx(ω>0)在区间[0,1]上至少出现了100次最小值,则ω≥$\frac{399}{2}$π.其中正确命题的序号是①③.

查看答案和解析>>

科目: 来源: 题型:填空题

16.已知向量$\overrightarrow{a}$=(1,-1),$\overrightarrow{b}$=(1,t).若|$\overrightarrow{a}$+$\overrightarrow{b}$|≤2,则t的取值范围是{1}.

查看答案和解析>>

同步练习册答案