相关习题
 0  224286  224294  224300  224304  224310  224312  224316  224322  224324  224330  224336  224340  224342  224346  224352  224354  224360  224364  224366  224370  224372  224376  224378  224380  224381  224382  224384  224385  224386  224388  224390  224394  224396  224400  224402  224406  224412  224414  224420  224424  224426  224430  224436  224442  224444  224450  224454  224456  224462  224466  224472  224480  266669 

科目: 来源: 题型:填空题

2.设函数f(x)=2cos2x+$\sqrt{3}$sin2x+a,已知当x∈[0,$\frac{π}{2}$]时,f(x)的最小值为-2,则a=-2.

查看答案和解析>>

科目: 来源: 题型:解答题

1.设△ABC的内角A,B,C所对的边分别为a,b,c,满足$\frac{\sqrt{2}a-b}{c}$=$\frac{cosB}{cosC}$.
(1)求角C的大小;
(2)设函数f(x)=cos(2x+C),将f(x)的图象向右平移$\frac{π}{4}$个单位长度后得到函数g(x)的图象,求函数g(x)在区间[0,$\frac{π}{3}$]上的值域.

查看答案和解析>>

科目: 来源: 题型:填空题

20.已知抛物线x2=4y过焦点的弦被焦点分成长度为m,n的两部分,则$\frac{1}{m}$+$\frac{1}{n}$=1.

查看答案和解析>>

科目: 来源: 题型:解答题

19.求下列函数的导数.
(1)y=sin4$\frac{x}{4}$+cos4$\frac{x}{4}$;
(2)y=($\sqrt{x}$+1)($\frac{1}{\sqrt{x}}$-1);
(3)y=-sin$\frac{x}{2}$(1-2cos2$\frac{x}{4}$).

查看答案和解析>>

科目: 来源: 题型:解答题

18.已知a为实数,函数f(x)=alnx+x2-4x.
(1)当a=1时,求f(x)在x=1处的切线方程;
(2)定义:若函数m(x)的图象上存在两点A,B,设线段AB的中点为P(x0,y0),若m(x)在点Q(x0,m(x0))处的切线l与直线AB平行或重合,则函数m(x)是“中值平衡函数”,切线l叫做函数m(x)的“中值平衡切线”,试判断函数f(x)是否是“中值平衡切线”?若是,判断函数f(x)的“中值平衡切线”的条数;若不是,说明理由;
(3)设g(x)=(a-2)x,若?x0∈[$\frac{1}{e}$,e],使得f(x0)≤g(x0)成立,求实数a的取值范围.

查看答案和解析>>

科目: 来源: 题型:选择题

17.过抛物线C:y2=2x的焦点F,且斜率为k(k>0)的直线l交C于R,S两点,若$\overrightarrow{RF}$=2$\overrightarrow{FS}$,则k的值为(  )
A.$\frac{1}{3}$B.$\frac{2\sqrt{3}}{3}$C.$\frac{\sqrt{2}}{4}$D.2$\sqrt{2}$

查看答案和解析>>

科目: 来源:2017届湖北襄阳四中高三七月周考三数学(文)试卷(解析版) 题型:解答题

已知函数的图象经过三点,且在区间内有唯一的最值,且为最小值.

(1)求出函数的解析式;

(2)在中,分别是角的对边,若,求的值.

查看答案和解析>>

科目: 来源:2017届湖北襄阳四中高三七月周考三数学(文)试卷(解析版) 题型:解答题

已知函数).

(1)求函数的单调区间;

(2)函数在定义域内存在零点,求的取值范围.

(3)若,当时,不等式恒成立,求的取值范围

查看答案和解析>>

科目: 来源:2017届湖北襄阳四中高三七月周考三数学(文)试卷(解析版) 题型:解答题

如图所示的多面体中,已知菱形和直角梯形所在的平面互相垂直,其中为直角,

(1)求证:平面

(2)求多面体的体积.

查看答案和解析>>

科目: 来源: 题型:填空题

16.焦点在x轴上的椭圆C,过点P($\sqrt{2}$,$\sqrt{2}$),且与直线l:y=x+$\sqrt{3}$交于A、B两点,若三角形PAB的面积为2,则C的标准方程为$\frac{{x}^{2}}{6}+\frac{{y}^{2}}{3}$=1.

查看答案和解析>>

同步练习册答案