相关习题
 0  224330  224338  224344  224348  224354  224356  224360  224366  224368  224374  224380  224384  224386  224390  224396  224398  224404  224408  224410  224414  224416  224420  224422  224424  224425  224426  224428  224429  224430  224432  224434  224438  224440  224444  224446  224450  224456  224458  224464  224468  224470  224474  224480  224486  224488  224494  224498  224500  224506  224510  224516  224524  266669 

科目: 来源: 题型:解答题

10.已知A点坐标为(-1,0),B点坐标为(1,0),且动点M到A点的距离是4,线段MB的垂直平分线l交线段MA于点P.(1)求动点P的轨迹C方程;
(2)若P是曲线C上的点,求k=|PA|•|PB|的最大值和最小值.

查看答案和解析>>

科目: 来源: 题型:解答题

9.已知函数f(x)=ex-mx+1,g(x)=ax-xlna(a>0,且a≠1),函数f(x)在x=0处的切线与直线y=(1-e)x平行.
(1)求实数m的值;
(2)讨论函数g(x)的单调性;
(3)证明:不等式f(x)+g(x)>2恒成立.

查看答案和解析>>

科目: 来源: 题型:选择题

8.已知向量$\overrightarrow{{e}_{1}}$与$\overrightarrow{{e}_{2}}$不共线,x,y∈R,且有(3x-4y)$\overrightarrow{{e}_{1}}$+(2x-3y)$\overrightarrow{{e}_{2}}$=6$\overrightarrow{{e}_{1}}$+3$\overrightarrow{{e}_{2}}$,则x-y的值为(  )
A.-3B.3C.0D.2

查看答案和解析>>

科目: 来源: 题型:解答题

7.求证:$\frac{sin(\frac{π}{4}+x)}{sin(\frac{π}{4}-x)}$+$\frac{cos(\frac{π}{4}+x)}{cos(\frac{π}{4}-x)}$=$\frac{2}{cos2x}$.

查看答案和解析>>

科目: 来源: 题型:解答题

6.对于实数集A={x|x2-2ax+(4a-3)=0}和B={x|x2-2$\sqrt{2}$ax+(a2+a+2)=0},是否存在实数a,使A∪B=∅?若a不存在,请说明理由;若a存在,请求出实数a的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

5.已知方程x2+y2-4(m+1)x+2(1-m2)y+m4-1=0表示一个圆.
(1)求m的取值范围;
(2)若直线l:x+y=0与圆交于A、B两点,圆心到直线l的距离为2$\sqrt{2}$,求|AB|.

查看答案和解析>>

科目: 来源: 题型:解答题

4.点M(x,y)(x≥0)与点F(1,0)的距离比到y轴的距离大1.
(1)求点M的轨迹C方程;
(2)过曲线C上的点P(x0,2)作两条弦PA,PB交抛物线于A、B两点,若PA、PB所在直线的斜率之和为零,求直线AB的斜率.

查看答案和解析>>

科目: 来源: 题型:填空题

3.设函数f(x)=$\left\{\begin{array}{l}{lo{g}_{4}({x}^{2}+1),x≤0}\\{sinx,0<x≤π}\end{array}\right.$,则不等式f(x)>$\frac{1}{2}$的解集为(-∞,-1)∪($\frac{π}{6}$,$\frac{5π}{6}$).

查看答案和解析>>

科目: 来源: 题型:选择题

2.在△ABC中,CD为AB边上的高,|$\overrightarrow{CD}$|=1,$\overrightarrow{BD}$•$\overrightarrow{DA}$=1,则$\overrightarrow{CA}$•$\overrightarrow{CB}$=(  )
A.0B.1C.-1D.2

查看答案和解析>>

科目: 来源: 题型:解答题

1.已知函数f(x)=sin2(x+$\frac{π}{12}$)-sinxcosx.
(Ⅰ)求f(x)的值域;
(Ⅱ)设锐角△ABC中角A,B,C所对的边分别为a,b,c,f(B)=$\frac{1}{2}$,a+c=3,b=$\sqrt{5}$,求△ABC的面积.

查看答案和解析>>

同步练习册答案