相关习题
 0  224374  224382  224388  224392  224398  224400  224404  224410  224412  224418  224424  224428  224430  224434  224440  224442  224448  224452  224454  224458  224460  224464  224466  224468  224469  224470  224472  224473  224474  224476  224478  224482  224484  224488  224490  224494  224500  224502  224508  224512  224514  224518  224524  224530  224532  224538  224542  224544  224550  224554  224560  224568  266669 

科目: 来源: 题型:解答题

20.求下列曲线的标准方程:
(1)两个焦点的坐标分别是(0,-6),(0,6),且双曲线过点A(-5,6),求双曲线的标准方程;
(2)求以原点为顶点,以坐标轴为对称轴,且焦点在直线3x-4y-12=0上的抛物线的标准方程.

查看答案和解析>>

科目: 来源: 题型:填空题

19.如图,正方形ABCD的边长为2,M,N分别为边BC,CD上的动点,且∠MAN=45°,则$\overrightarrow{AM}•\overrightarrow{AN}$的最小值为8($\sqrt{2}$-1).

查看答案和解析>>

科目: 来源: 题型:解答题

18.在直角坐标系下,直线l经过点P(-1,2),倾斜角为α,以原点为极点,x轴的正向为极轴,建立极坐标系,在此极坐标系下,曲线C:ρ=-2cosθ.
(1)写出直线l的参数方程和曲线C的直角坐标系方程;
(2)设直线l与曲线C相交于A,B(A,B也可能重合),求$\frac{1}{{|{PA}|}}+\frac{1}{{|{PB}|}}$的最小值.

查看答案和解析>>

科目: 来源: 题型:解答题

17.将单位圆经过伸缩变换:φ:$\left\{\begin{array}{l}{x′=λx}\\{y′=μy}\end{array}\right.$(λ>0,μ>0)得到曲线C:$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{2}$=1
(1)求实数λ,μ的值;
(2)以原点O 为极点,x 轴为极轴建立极坐标系,将曲线C 上任意一点到极点的距离ρ(ρ≥0)?表示为对应极角θ(0≤θ<2π)的函数,并探求θ为何值时,ρ取得最小值?

查看答案和解析>>

科目: 来源: 题型:解答题

16.已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)经过点($\sqrt{2}$,$\sqrt{3}$),左焦点F(-c,0)到直线bx+ay=0的距离为$\frac{\sqrt{3}b}{3}$.
(1)求椭圆E的方程;
(2)直线l过点F,与椭圆E交于不同两点A,B,椭圆E的右焦点为F′,求当△ABF′面积最大时直线l的方程.

查看答案和解析>>

科目: 来源: 题型:填空题

15.已知点P为椭圆$\frac{{x}^{2}}{12}$+$\frac{{y}^{2}}{3}$=1上一点,F1,F2分别为椭圆的左右焦点
(1)若|PF1|=4,N为PF1的中点,则ON=2$\sqrt{3}$-2.
(2)若PF1与y轴的交点M恰为PF1的中点,则M的坐标(0,±$\frac{\sqrt{3}}{4}$).

查看答案和解析>>

科目: 来源: 题型:解答题

14.设椭圆M:$\frac{{x}^{2}}{5}$+$\frac{{y}^{2}}{{b}^{2}}$=1(b>0)的焦点在x轴上,O为坐标原点,过椭圆右焦点垂直于x轴的直线,交椭圆于点A、B,S△AOB=$\frac{2}{5}$$\sqrt{5}$.
(I)求椭圆M的方程;
(Ⅱ)动直线l交椭圆M于不同的两点C,D,若以|CD|为直径的圆过原点O,
(i)求线段|CD|的取值范围;
(ii)证明:直线l与定圆N相切.

查看答案和解析>>

科目: 来源: 题型:解答题

13.设椭圆的方程为$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$,点O为坐标原点,点A,B分别为椭圆的右顶点和上顶点,点M在线段AB上且满足|BM|=2|MA|,直线OM的斜率为$\frac{{\sqrt{5}}}{10}$.
(Ⅰ)求椭圆的离心率;
(Ⅱ)设点C为椭圆的下顶点,N为线段AC的中点,证明:MN⊥AB.

查看答案和解析>>

科目: 来源: 题型:填空题

12.已知△A1B1C1的三内角余弦值分别等于△A2B2C2三内角的正弦值,那么两个三角形六个内角中的最大值为钝角.

查看答案和解析>>

科目: 来源: 题型:填空题

11.已知O为△ABC的外心,且$|{\overrightarrow{AB}}|=7,|{\overrightarrow{AC}}|=5$,则$\overrightarrow{AO}•\overrightarrow{BC}$的值为-12.

查看答案和解析>>

同步练习册答案