相关习题
 0  224454  224462  224468  224472  224478  224480  224484  224490  224492  224498  224504  224508  224510  224514  224520  224522  224528  224532  224534  224538  224540  224544  224546  224548  224549  224550  224552  224553  224554  224556  224558  224562  224564  224568  224570  224574  224580  224582  224588  224592  224594  224598  224604  224610  224612  224618  224622  224624  224630  224634  224640  224648  266669 

科目: 来源: 题型:选择题

11.已知向量$\overrightarrow{OA}$在基底{$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$}下的坐标为(8,6,4),其中$\overrightarrow{a}$=$\overrightarrow{i}$+$\overrightarrow{j}$,$\overrightarrow{b}$=$\overrightarrow{j}$+$\overline{k}$,$\overrightarrow{c}$=$\overrightarrow{k}$+$\overrightarrow{i}$则向量$\overrightarrow{OA}$在基底($\overrightarrow{i}$,$\overrightarrow{j}$,$\overrightarrow{k}$)下的坐标为(  )
A.(12,14,10)B.(10,12,14)C.(14,12,10)D.(4,3,2)

查看答案和解析>>

科目: 来源: 题型:填空题

10.若以原点O为圆心的圆同时经过椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左顶点A1及右顶点A2,且被过焦点F(c,0)的直线l:x=c分成弧长为2:1的两端圆弧,则该椭圆的离心率e等于$\frac{1}{2}$.

查看答案和解析>>

科目: 来源: 题型:解答题

9.若函数f(x)对任意实数x.y∈R均有f(x)+f(y)=f(x+y),且当x>0时,f(x)<0,f(1)=-2;
(1)求证:f(x)为奇函数:
(2)求证:f(x)是R上的减函数:
(3)求f(x)在[-3,4]上的最大值和最小值:
(4)解不等f(x-4)+f(2-x2)≤16.

查看答案和解析>>

科目: 来源: 题型:解答题

8.已知数列{an}满足a1=2,an+an+1=2n-3.求数列{an}的前n项和Sn

查看答案和解析>>

科目: 来源: 题型:填空题

7.计算∫x2arctanxdx,可设u=arctanx,dv=$\frac{1}{{x}^{2}}$dx.

查看答案和解析>>

科目: 来源: 题型:解答题

6.已知数列{an}满足$\frac{2}{{a}_{n+1}}$=$\frac{1}{{a}_{n}}$+$\frac{1}{{a}_{n+2}}$(n∈N*),且a3=$\frac{1}{5}$,a2=3a5
(I)求{an}的通项公式
(Ⅱ)若bn=anan+1(n∈N*),求数列{bn}的前n项和Sn

查看答案和解析>>

科目: 来源: 题型:填空题

5.已知函数f(x)=$\frac{{3}^{x}-1}{{3}^{x}+1}$
(I)判断f(x)在R上的单调性,并加以证明
(II)当x∈[1,2]时,f(ax-1)+f($\frac{1}{2}$)≤0恒成立,求实数a的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

4.关于x的二次方程x2+(a-1)x+1=0有实根.求实数a的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

3.已知函数f(x)=Asin(ωx-$\frac{π}{3}$)+1(A>0,ω>0)的最大值为3,其图象相邻两条对称轴之间的距离是$\frac{π}{2}$.
(1)求f(x)的解析式:
(2)求f(x)的在[0,π]上的单增区间:
(3)若f($\frac{α}{2}$)>2,求α的取值范围.

查看答案和解析>>

科目: 来源: 题型:填空题

2.直角△ABC的三个顶点都在给定的抛物线y2=4x上,且斜边AB和y轴平行.则△ABC斜边上的高的长度为4.

查看答案和解析>>

同步练习册答案