相关习题
 0  224480  224488  224494  224498  224504  224506  224510  224516  224518  224524  224530  224534  224536  224540  224546  224548  224554  224558  224560  224564  224566  224570  224572  224574  224575  224576  224578  224579  224580  224582  224584  224588  224590  224594  224596  224600  224606  224608  224614  224618  224620  224624  224630  224636  224638  224644  224648  224650  224656  224660  224666  224674  266669 

科目: 来源: 题型:填空题

14.下列结论:
①若命题p:存在x∈R,tan x=2;命题q:任意x∈R,x2-x+$\frac{1}{2}$>0.则命题“p且(非q)”是假命题;
②已知直线l1:ax+3y-1=0,l2:x+by+1=0,则l1⊥l2的充要条件是$\frac{a}{b}$=-3;
③设F1,F2是双曲线C:$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的两个焦点,P是C上一点,若|PF1|+|PF2|=6a,且△PF1F2的最小内角为30°,则C的离心率为$\sqrt{3}$.
④设正实数x,y,z满足x2-3xy+4y2-z=0,则当$\frac{xy}{z}$取得最大值时,$\frac{2}{x}$+$\frac{1}{y}$-$\frac{2}{z}$的最大值为1.
其中正确结论的序号为①③④.(把你认为正确结论的序号都填上)

查看答案和解析>>

科目: 来源: 题型:选择题

13.若直线y=m与y=3x-x3的图象有三个不同的交点,则实数m的取值范围为(  )
A.(-2,2)B.[-2,2]C.(-∞,-2)∪(2,+∞)D.(-∞,-2]∪[2,+∞)

查看答案和解析>>

科目: 来源: 题型:选择题

12.学校举办运动会时,高一(1)班有28名同学参加比赛,有15人参加游泳比赛,有8人参加田径比赛,有14人参加球类比赛,同时参加游泳和田径比赛的有3人,同时参加游泳和球类比赛的有3人,没有人同时参加三项比赛.则同时参加田径和球类比赛的人数是(  )
A.3B.4C.5D.6

查看答案和解析>>

科目: 来源: 题型:解答题

11.(Ⅰ)设U=R,A={x|-2≤x<4},B={x|8-2x≥3x-7},求(∁UA)∩(∁UB).
(Ⅱ)已知集合A={x|3x-4≤0},B={x|x-m<0},且A∩B=B,求m的取值范围.

查看答案和解析>>

科目: 来源: 题型:选择题

10.已知函数f(x)=2sin(ωx+φ)(ω>0,0<φ<π)的图象上相邻两个最高点的距离为π.若将函数f(x)的图象向左平移$\frac{π}{6}$个单位长度后,所得图象关于y轴对称.则函数f(x)的解析式为(  )
A.f(x)=2sin(x+$\frac{π}{6}$)B.f(x)=2sin(x+$\frac{π}{3}$)C.f(x)=2sin(2x+$\frac{π}{6}$)D.f(x)=2sin(2x+$\frac{π}{3}$)

查看答案和解析>>

科目: 来源: 题型:解答题

9.函数f(x)=x2-ax+a(x∈R),数列$\{a_n^{\;}\}$的前n项和Sn=f(n),且f(x)同时满足:①不等式f(x)≤0的解集有且只有一个元素;②在定义域内存在0<x1<x2,使得不等式f(x1)>f(x2)成立.
(1)求函数f(x)的表达式;     
(2)求数列$\{a_n^{\;}\}$的通项公式.

查看答案和解析>>

科目: 来源: 题型:解答题

8.已知数列$\{a_n^{\;}\}$满足a1=2,${a_{n+1}}=2{a_n}+2\;\;(n∈{N^*})$.
(1)求证:数列$\{a_n^{\;}+2\}$是等比数列,并求出通项公式an
(2)若数列$\{b_n^{\;}\}满足b_n^{\;}={log_2}({a_n}+2)$,设Tn是数列$\{\frac{b_n}{{{a_n}+2}}\}$的前n项和,求证:${T_n}<\frac{3}{2}$.

查看答案和解析>>

科目: 来源: 题型:解答题

7.已知△ABC中,角A,B,C所对的边分别为a,b,c,且满足$sinA(sinB+\sqrt{3}cosB)=\sqrt{3}sinC$.
(1)求角A的大小;    
(2)若$a=2\sqrt{3},\;b+c=4$,求△ABC的面积.

查看答案和解析>>

科目: 来源: 题型:解答题

6.已知定义域为R的二次函数的最小值为0,且有f(1+x)=f(1-x),直线g(x)=4(x-1)的图象与f(x)的图象交于两点,两点间的距离为$4\sqrt{17}$,数列{an}满足a1=2,$({a_{n+1}}-{a_n})\;•\;g({a_n})+f({a_n})=0\;(n∈{N^*})$.
(1)求函数f(x)的解析式;
(2)求证数列{an-1}是等比数列;
(3)设bn=3f(an)-g(an+1),求数列{bn}的最小值及相应的n.

查看答案和解析>>

科目: 来源: 题型:解答题

5.已知数列$\{a_n^{\;}\}$满足a1=2,${a_{n+1}}=2{a_n}+2\;\;(n∈{N^*})$.
(1)求数列$\{a_n^{\;}\}$的通项公式an
(2)若数列$\{b_n^{\;}\}满足b_n^{\;}={log_2}({a_n}+2)$,设Tn是数列$\{\frac{b_n}{{{a_n}+2}}\}$的前n项和,求证:${T_n}<\frac{3}{2}$.

查看答案和解析>>

同步练习册答案