相关习题
 0  224581  224589  224595  224599  224605  224607  224611  224617  224619  224625  224631  224635  224637  224641  224647  224649  224655  224659  224661  224665  224667  224671  224673  224675  224676  224677  224679  224680  224681  224683  224685  224689  224691  224695  224697  224701  224707  224709  224715  224719  224721  224725  224731  224737  224739  224745  224749  224751  224757  224761  224767  224775  266669 

科目: 来源: 题型:填空题

1.在直角坐标系中,O是原点,A($\sqrt{3}$,-1),将点A绕O顺时针旋转45°到B点,则点B的坐标为($\frac{\sqrt{6}-\sqrt{2}}{2}$,$\frac{\sqrt{2}+\sqrt{6}}{2}$).

查看答案和解析>>

科目: 来源: 题型:解答题

20.(1)函数y=lg(3-4x+x2)的定义域为A,当x∈A时,求f(x)=2x+2-3×4x的最值.
(2)已知函数f(x)=log0.5(x2-ax-a)的值域为R,且f(x)在(-∞,1-$\sqrt{3}$)上是增函数,求a的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

19.如图,若P为平行四边形ABCD所在平面外一点,点H为PC上的点,且$\frac{PH}{HC}$=$\frac{1}{2}$,点G在AH上,且$\frac{AG}{AH}$=m,若G,B,P,D四点共面,求m的值.

查看答案和解析>>

科目: 来源: 题型:填空题

18.若不等式ax2+3x+5>0在区间[1,6]上恒成立,则实数a的取值范围为a>-$\frac{23}{36}$.

查看答案和解析>>

科目: 来源: 题型:填空题

17.函数f(x)=$\sqrt{sinx-\frac{1}{2}}$,x∈(0,2π)的定义域是[$\frac{π}{6}$,$\frac{5π}{6}$].

查看答案和解析>>

科目: 来源: 题型:填空题

16.已知椭圆的中心在原点,一个焦点为F(3,0),若以其四个顶点为顶点的四边形的面积是40,则该椭圆的方程是$\frac{{x}^{2}}{25}+\frac{{y}^{2}}{16}=1$.

查看答案和解析>>

科目: 来源: 题型:填空题

15.法国数学家棣莫弗,A.(De Moivre,Abraham)证明了这样一个结论(也称棣莫弗定理)(cosα+isinα)n=cos(nα)+isin(nα)(这里i为虚数单位,n为正整数),应用此结论求下面式子的值
${C}_{7}^{0}$(cos$\frac{π}{7}$)7-${C}_{7}^{2}$(cos$\frac{π}{7}$)5(sin$\frac{π}{7}$)2+${C}_{7}^{4}$(cos$\frac{π}{7}$)3(sin$\frac{π}{7}$)4-${C}_{7}^{6}$(cos$\frac{π}{7}$)(sin$\frac{π}{7}$)6=-1.

查看答案和解析>>

科目: 来源: 题型:选择题

14.过双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点F作倾斜角为45°的直线l与双曲线右支交于A、B两点,当a≤|AB|≤4a时,双曲线C的离心率的取值范围为(  )
A.[$\frac{\sqrt{30}}{5}$,$\frac{\sqrt{6}}{2}$]B.(1,$\frac{\sqrt{6}}{2}$]C.(1,$\frac{\sqrt{30}}{5}$]D.[$\sqrt{2}$,+∞)

查看答案和解析>>

科目: 来源: 题型:解答题

13.如图,长方体ABCD-A′B′C′D′中,化简下列各式,并在图中标出化简得到的向量:
(1)$\overrightarrow{AA′}$-$\overrightarrow{CB}$;
(2)$\overrightarrow{AB′}$+$\overrightarrow{B′C′}$+$\overrightarrow{C′D′}$;
(3)$\frac{1}{2}$$\overrightarrow{AD}$+$\frac{1}{2}$$\overrightarrow{AB}$-$\frac{1}{2}$$\overrightarrow{A′A}$.

查看答案和解析>>

科目: 来源: 题型:解答题

12.已知函数g(x)=ax2-2ax+1+b(a≠0,b<1),在区间[2,3]上有最大值4,最小值1,设f(x)=$\frac{g(x)}{x}$.
(1)求常数a,b的值;
(2)方程f(|2x-1|)+k($\frac{2}{|{2}^{x}-1|}$-3)=0有三个不同的解,求实数k的取值范围.

查看答案和解析>>

同步练习册答案