相关习题
 0  224634  224642  224648  224652  224658  224660  224664  224670  224672  224678  224684  224688  224690  224694  224700  224702  224708  224712  224714  224718  224720  224724  224726  224728  224729  224730  224732  224733  224734  224736  224738  224742  224744  224748  224750  224754  224760  224762  224768  224772  224774  224778  224784  224790  224792  224798  224802  224804  224810  224814  224820  224828  266669 

科目: 来源: 题型:解答题

17.设Sn是数列{an}(n∈N*)的前n项和,a1=1,且Sn2=n2an+Sn-12,an≠0,n≥2,n∈N*
(1)证明:an+2-an=2(n∈N*);
(2)若an=log3bn,求数列{an•bn}的前n项和Tn

查看答案和解析>>

科目: 来源: 题型:选择题

16.下列各组函数中,表示同一函数的是(  )
A.y=$\sqrt{{x}^{2}}$和y=$(\sqrt{x})^{2}$B.y=lg(x2-1)和y=lg(x+1)+lg(x-1)
C.y=logax2和y=2logxD.y=x和y=logaax

查看答案和解析>>

科目: 来源: 题型:填空题

15.函数y=2sin(x-$\frac{π}{3}$),x∈[-π,0]的单调增区间为[-$\frac{π}{6}$,0].

查看答案和解析>>

科目: 来源: 题型:填空题

14.已知$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(1,-1),则cos<2$\overrightarrow{a}$+$\overrightarrow{b}$,$\overrightarrow{a}$-$\overrightarrow{b}$>=$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目: 来源: 题型:解答题

13.若函数f(x)=sinωx($\sqrt{3}$cosωx-sinωx)(0<ω<1)的图象关于直线x=$\frac{2π}{3}$对称.
(1)求f(x)在[0,2015π]上的零点个数;
(2)若点A(x0,y0)是y=f(x)图象的对称中心,且x0∈(0,2π],求点A的坐标.

查看答案和解析>>

科目: 来源: 题型:填空题

12.设函数f(x)=|x-a|-$\frac{3}{x}$+a,a∈R,若实数a,使得f(x)=2有且仅有3个不同实数根,且它们成等差数列,则所有a的取值构成的集合为{a|a=$\frac{5+3\sqrt{33}}{8}$或-$\frac{9}{5}$}.

查看答案和解析>>

科目: 来源: 题型:解答题

11.已知全集U=R,集合A={x|y=$\frac{1}{\sqrt{x-2}}$+lg(3-x)},集合B={x|x2+(2-a)x-2a<0}.
(1)求集合CA.
(2)若A∪B=A,求实数a的取值范围.

查看答案和解析>>

科目: 来源: 题型:填空题

10.($\frac{x}{2}$+$\frac{1}{x}$$+\sqrt{2}$)2的展开式中的常数项为3.(用数字作答)

查看答案和解析>>

科目: 来源: 题型:选择题

9.已知x,y满足约柬条件$\left\{\begin{array}{l}{x-y-1≤0}\\{2x-y-3≥0}\end{array}\right.$,当目标函数z=ax+by(a>0,b>0)在该约束条件下取到最小值2时,则$\frac{3}{a}$+$\frac{2}{b}$的最小值为(  )
A.$\frac{25}{6}$B.4$+\sqrt{3}$C.4$+2\sqrt{3}$D.4$\sqrt{3}$

查看答案和解析>>

科目: 来源: 题型:选择题

8.若f(x)=$\left\{\begin{array}{l}{x+\frac{1}{x}-a.x≥\frac{1}{2}}\\{x+2-a,x<\frac{1}{2}}\end{array}\right.$的三个零点为x1,x2,x3,则x1x2x3的取值范围是(  )
A.(0,+∞)B.(0,$\frac{3}{2}$)C.(0,$\frac{1}{2}$)D.($\frac{1}{2}$,$\frac{3}{2}$)

查看答案和解析>>

同步练习册答案