相关习题
 0  224689  224697  224703  224707  224713  224715  224719  224725  224727  224733  224739  224743  224745  224749  224755  224757  224763  224767  224769  224773  224775  224779  224781  224783  224784  224785  224787  224788  224789  224791  224793  224797  224799  224803  224805  224809  224815  224817  224823  224827  224829  224833  224839  224845  224847  224853  224857  224859  224865  224869  224875  224883  266669 

科目: 来源: 题型:填空题

13.已知集合A={1,3},B={0,1,a},A∪B={0,1,3},则a=3.

查看答案和解析>>

科目: 来源: 题型:选择题

12.已知数{an}满a1=0,an+1=an+2n,那a2016的值是(  )
A.2014×2015B.2015×2016C.2014×2016D.2015×2015

查看答案和解析>>

科目: 来源: 题型:填空题

11.已知函f(x)=$\left\{\begin{array}{l}{-{x}^{3}+{x}^{2}+bx+c,x<1}\\{alnx,x≥1}\end{array}\right.$的图象过坐标原点O,且在(-1,f(-1))处
的切线的斜率是-5.
(Ⅰ)求实b、c的值;
(Ⅱ)f(x)在区[-1,2]上的最大值;
(Ⅲ)对任意给定的正实a,曲y=f(x)上是否存在两点P、Q,使得△POQ是以O为直角顶点的直角三角形,且此三角形斜边中点y轴上?说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

10.若函f(x)=sin2ax-sinaxcosax(a>0)的图象与直y=m(m>0)相切,并且切点的横坐标依次成公差$\frac{π}{2}$的等差数列.
(Ⅰ)m的值;
(Ⅱ)若A(x0,y0)y=f(x)图象的对称中心,x0∈[0,$\frac{π}{2}$],求A的坐标.

查看答案和解析>>

科目: 来源: 题型:解答题

9.关于直线x+2y=0的对称点仍在圆上,且圆与直线x-y+1=0相交的弦长为2$\sqrt{2}$,求圆的方程.

查看答案和解析>>

科目: 来源: 题型:选择题

8.在平面直角坐标系xOy中,已知点A(0,-1),B点在直线y=1上,M点满足$\overrightarrow{MB}$∥$\overrightarrow{OA}$,$\overrightarrow{MA}$•$\overrightarrow{AB}$=$\overrightarrow{MB}$•$\overrightarrow{BA}$,M点的轨迹方程为(  )
A.y2=4xB.x2=-4yC.x2+4y2=1D.x2-4y2=1

查看答案和解析>>

科目: 来源: 题型:填空题

7.已知数列{an}是首项、公比都为正数的等比数列,数列$\left\{{\frac{1}{{{a_n}•{a_{n+1}}}}}\right\}$的前n项和为$\frac{{8({4^n}-1)}}{3}$,则数列{an}的通项公式为${a_n}={({\frac{1}{2}})^n}$.

查看答案和解析>>

科目: 来源: 题型:选择题

6.已知数列:$\frac{1}{1}$,$\frac{2}{1}$,$\frac{1}{2}$,$\frac{3}{1}$,$\frac{2}{2}$,$\frac{1}{3}$,$\frac{4}{1}$,$\frac{3}{2}$,$\frac{2}{3}$,$\frac{1}{4}$,…,依它的前10项的规律,这个数列的第2013项a2013满足(  )
A.0<a2013<$\frac{1}{10}$B.$\frac{1}{10}$≤a2013<1C.1≤a2013≤10D.a2013>10

查看答案和解析>>

科目: 来源: 题型:选择题

5.已知F是抛物线y2=4x的焦点,A,B是该抛物线上的两点.若线段AB的中点到y轴的距离为$\frac{3}{2}$,则|AF|+|BF|=(  )
A.4B.5C.6D.7

查看答案和解析>>

科目: 来源: 题型:解答题

4.已知|$\overrightarrow a|=4,|\overrightarrow b|=3,(2\overrightarrow a-3\overrightarrow b)•(2\overrightarrow a+\overrightarrow b)=61$.
(1)求$\overrightarrow a$与$\overrightarrow b$的夹角θ;
(2)若$\vec c=t\vec a+(1-t)\vec b$,且$\vec b•\vec c=0$,求$|{\vec c}$|.

查看答案和解析>>

同步练习册答案