相关习题
 0  224817  224825  224831  224835  224841  224843  224847  224853  224855  224861  224867  224871  224873  224877  224883  224885  224891  224895  224897  224901  224903  224907  224909  224911  224912  224913  224915  224916  224917  224919  224921  224925  224927  224931  224933  224937  224943  224945  224951  224955  224957  224961  224967  224973  224975  224981  224985  224987  224993  224997  225003  225011  266669 

科目: 来源: 题型:填空题

3.$\overrightarrow{{A}_{1}{A}_{2}}$+$\overrightarrow{{A}_{2}{A}_{3}}$+$\overrightarrow{{A}_{3}{A}_{4}}$+$\overrightarrow{{A}_{4}{A}_{5}}$=$\overrightarrow{{A}_{1}{A}_{5}}$.

查看答案和解析>>

科目: 来源: 题型:填空题

2.$\overrightarrow{AB}$+$\overrightarrow{AC}$+$\overrightarrow{CB}$-$\overrightarrow{BA}$=3$\overrightarrow{AB}$.

查看答案和解析>>

科目: 来源: 题型:填空题

1.如果$\overrightarrow{a}$=-$\frac{2}{3}$$\overrightarrow{b}$,则$\overrightarrow{a}$与$\overrightarrow{b}$的关系是反向共线.

查看答案和解析>>

科目: 来源: 题型:解答题

20.设函数f(x)=-x2-2x,g(x)=$\left\{\begin{array}{l}{x+\frac{1}{4x},x>o}\\{x+1,x≤0}\end{array}\right.$,h(x)=g[f(x)].
(1)求函数h(x)的单调递增区间.
(2)若关于x的方程h(x)-a=0有4个不同的实数很,求实数a的取值范围.

查看答案和解析>>

科目: 来源: 题型:填空题

19.已知sin(2π-α)=$\frac{4}{5}$,α∈($\frac{3π}{2}$,2π),则$\frac{sinα+cosα}{sinα-cosα}$=$\frac{1}{7}$.

查看答案和解析>>

科目: 来源: 题型:解答题

18.已知函数f(x)=$\left\{\begin{array}{l}{{-x}^{2}+ax(x≤1)}\\{{a}^{2}x-7a+14(x>1)}\end{array}\right.$,若存在x1,x2∈R,且x1≠x2,使得f(x1)=f(x2).
(I)求实数a的取值集合A;
(Ⅱ)若a∈A,且函数g(x)=1g[ax2+(a+3)x+4]的值域为R,求实数a的取值范围.

查看答案和解析>>

科目: 来源: 题型:选择题

17.平行四边形ABCD中,AB=4,AD=2,$\overrightarrow{AB}$•$\overrightarrow{AD}$=4,点P在边CD上,则$\overrightarrow{PA}$•$\overrightarrow{PB}$的取值范围是(  )
A.[-1,8]B.[-1,+∞)C.[0,8]D.[-1,0]

查看答案和解析>>

科目: 来源: 题型:选择题

16.等差数列{an}的前n项为Sn,若公差d=-2,S3=21,则当Sn取得最大值时,n的值为(  )
A.10B.9C.6D.5

查看答案和解析>>

科目: 来源: 题型:选择题

15.已知实数a,b满足2a2-5lna-b=0,c∈R,则$\sqrt{(a-c)^{2}+(b+c)^{2}}$的最小值为(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{2}}{2}$C.$\frac{3\sqrt{2}}{2}$D.$\frac{9}{2}$

查看答案和解析>>

科目: 来源: 题型:选择题

14.若函数y=f(x)在x=a处的导数为A,则$\underset{lim}{△x→0}$$\frac{f(a+△x)-f(a-△x)}{△x}$为(  )
A.AB.2AC.$\frac{A}{2}$D.0

查看答案和解析>>

同步练习册答案