相关习题
 0  224823  224831  224837  224841  224847  224849  224853  224859  224861  224867  224873  224877  224879  224883  224889  224891  224897  224901  224903  224907  224909  224913  224915  224917  224918  224919  224921  224922  224923  224925  224927  224931  224933  224937  224939  224943  224949  224951  224957  224961  224963  224967  224973  224979  224981  224987  224991  224993  224999  225003  225009  225017  266669 

科目: 来源: 题型:解答题

3.已知函数f(x)=3•2x+$\frac{3}{{2}^{x}}$,x∈R.
(1)判断函数f(x)的奇偶性,并说明理由;
(2)利用函数单调性定义证明:f(x)在(0,+∞)上是增函数;
(3)若f(x)≥k+log2$\frac{8}{m}$•log2(2m)(m>0,k∈R)对任意的x∈R,任意的m∈(0,+∞)恒成立,求实数k的取值范围.

查看答案和解析>>

科目: 来源: 题型:选择题

2.函数y=$\frac{2}{\sqrt{x-4}}$的值域是(  )
A.RB.(0,+∞)C.(-∞,4)D.(-∞,4)∪(4,+∞)

查看答案和解析>>

科目: 来源: 题型:选择题

1.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的离心率e=$\frac{5}{4}$,且双曲线C的焦点到它的一条渐近线的距离为3,则双曲线C的方程为(  )
A.$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{3}$=1B.$\frac{{x}^{2}}{3}$-$\frac{{y}^{2}}{4}$=1C.$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{9}$=1D.$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1

查看答案和解析>>

科目: 来源: 题型:选择题

20.设a≠0,函数f(x)=$\left\{\begin{array}{l}{4lo{g}_{2}(-x),x<0}\\{|{x}^{2}-ax|,x≥0}\end{array}\right.$,若f[f(-$\sqrt{2}$)]=4,则f(a)=(  )
A.8B.4C.2D.1

查看答案和解析>>

科目: 来源: 题型:选择题

19.当x=$\frac{π}{4}$时,函数f(x)=sin(x+φ)取得最小值,则函数y=f($\frac{3π}{4}$-x)的一个单调递增区间是(  )
A.(0,$\frac{π}{2}$)B.($\frac{π}{2}$,π)C.(-$\frac{π}{2}$,-$\frac{π}{4}$)D.($\frac{3π}{2}$,2π)

查看答案和解析>>

科目: 来源: 题型:选择题

18.下列函数中,既是偶函数,周期为π的是(  )
A.y=sin|x|B.y=|tanx|C.y=|sin2x|D.y=cos(2x+$\frac{x}{2}$)

查看答案和解析>>

科目: 来源: 题型:解答题

17.如图所示,在几何体ABCDE中,AB=BC=CA=EB=EC=2$\sqrt{3}$,DE=$\sqrt{2}$,点D在底面ABC上的射影O为底面三角形ABC的中心,平面BEC⊥平面ABC.
(1)证明:A,D,E,O四点共面;
(2)求几何体ABCDE的体积.

查看答案和解析>>

科目: 来源: 题型:解答题

16.已知f(x)=2sin(2x+$\frac{π}{6}$)+a+1(其中a为常数).
(1)求f(x)的单调减区间;
(2)求出使f(x)取得最大值时x的集合;
(3)若x∈[0,$\frac{π}{2}$]时,f(x)的最小值为1,求a的值.

查看答案和解析>>

科目: 来源: 题型:填空题

15.已知函数f(x)=$\frac{1}{3}$sin(2x-$\frac{2π}{3}$),其中x∈R,其中正确说法的序号是②④
①函数的最小正周期是$\frac{π}{2}$;
②函数f(x)的图象关于点($\frac{π}{3}$,0)对称;
③函数的图象是由y=$\sqrt{3}$sin2x的图象向右平移$\frac{2π}{3}$;
④函数f(x)在区间[$\frac{π}{12}$,$\frac{5π}{12}$]上单调递增.

查看答案和解析>>

科目: 来源: 题型:填空题

14.已知点M在线段AB上,且$\frac{AM}{MB}$=$\frac{7}{3}$,则BM=$\frac{3}{10}$AB.

查看答案和解析>>

同步练习册答案