相关习题
 0  224834  224842  224848  224852  224858  224860  224864  224870  224872  224878  224884  224888  224890  224894  224900  224902  224908  224912  224914  224918  224920  224924  224926  224928  224929  224930  224932  224933  224934  224936  224938  224942  224944  224948  224950  224954  224960  224962  224968  224972  224974  224978  224984  224990  224992  224998  225002  225004  225010  225014  225020  225028  266669 

科目: 来源: 题型:填空题

18.圆心在点A(a,$\frac{π}{2}$),半径等于a的圆的极坐标方程是ρ=2asinθ.

查看答案和解析>>

科目: 来源: 题型:解答题

17.如图,在四棱锥P-ABCD中,PA⊥ABCD,AD⊥AB,AB∥DC,AD=DC=AP=2,AB=1,点E为棱PC的中点.
(1)证明BE⊥DC;
(2)求二面角E-AB-P的值;
(3)求直线BE与平面PBD所成角的正弦值.

查看答案和解析>>

科目: 来源: 题型:解答题

16.如图所示,点E,F在以AB为直径的圆O(O为圆心)上,AB∥EF,平面ABCD⊥平面ABEF,且AB=2,AD=EF=1
(Ⅰ)设FC的中点为M,求证:OM∥面DAF;
(Ⅱ)求证:AF⊥面CBF.

查看答案和解析>>

科目: 来源: 题型:解答题

15.已知数列{an}的前n项和为Sn,且S2=0,2Sn+n=nan(n∈N*).
(1)计算a1,a2,a3,a4,并求数列{an}的通项公式;
(2)若数列{bn}满足b1+3b2+5b3+…+(2n-1)bn=2n•an+3,求证:数列{bn}是等比数列;
(3)由数列{an}的项组成一个新数列{cn}:c1=a1,c2=a2+a3,c3=a4+a5+a6+a7,…,${c_n}={a_{2{\;^{n-1}}}}+{a_{{2^{\;n-1}}+1}}+{a_{{2^{\;n-1}}+2}}+…+{a_{2{\;^n}-1}}$,….设Tn为数列{cn}的前n项和,试求$\lim_{n→∞}\frac{T_n}{4^n}$的值.

查看答案和解析>>

科目: 来源: 题型:解答题

14.对于函数$f(x)=\frac{1}{1-x}$,定义${f_1}(x)=f(x),{f_{n+1}}(x)=f[{{f_n}(x)}]\;\;(n∈{N^*})$.已知偶函数g(x)的定义域为(-∞,0)∪(0,+∞),g(1)=0;当x>0,且x≠1时,g(x)=f2015(x).
(1)求f2(x),f3(x),f4(x),并求出函数y=g(x)的解析式;
(2)若存在实数a,b(a<b)使得函数g(x)在[a,b]上的值域为[mb,ma],求实数m的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

13.已知△ABC的面积为S,且$\overrightarrow{AB}•\overrightarrow{AC}=S$.
(1)求sinA,cosA,tan2A的值;
(2)若$B=\frac{π}{4},\;\;|{\overrightarrow{CA}-\overrightarrow{CB}}|=6$,求△ABC的面积S.

查看答案和解析>>

科目: 来源: 题型:解答题

12.如图,在正三棱柱ABC-A1B1C1中,已知它的底面边长为10,高为20.
(1)求正三棱柱ABC-A1B1C1的表面积与体积;
(2)若P、Q分别是BC、CC1的中点,求异面直线PQ与AC所成角的大小(结果用反三角函数表示).

查看答案和解析>>

科目: 来源: 题型:选择题

11.设α、β为两个不同平面,若直线l在平面α内,则“α⊥β”是“l⊥β”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目: 来源: 题型:填空题

10.已知数据x1,x2,…,x8的方差为16,则数据2x1+1,2x2+1,…,2x8+1的标准差为8.

查看答案和解析>>

科目: 来源: 题型:填空题

9.如图,已知双曲线C的右焦点为F,过它的右顶点A作实轴的垂线,与其一条渐近线相交于点B;若双曲线C的焦距为4,△OFB为等边三角形(O为坐标原点,即双曲线C的中心),则双曲线C的方程为${x^2}-\frac{y^2}{3}=1$.

查看答案和解析>>

同步练习册答案