相关习题
 0  224856  224864  224870  224874  224880  224882  224886  224892  224894  224900  224906  224910  224912  224916  224922  224924  224930  224934  224936  224940  224942  224946  224948  224950  224951  224952  224954  224955  224956  224958  224960  224964  224966  224970  224972  224976  224982  224984  224990  224994  224996  225000  225006  225012  225014  225020  225024  225026  225032  225036  225042  225050  266669 

科目: 来源: 题型:选择题

18.在△ABC中,若b=2,c=6,∠A=$\frac{π}{4}$,则S△ABC=(  )
A.3$\sqrt{2}$B.4$\sqrt{2}$C.3$\sqrt{3}$D.4$\sqrt{3}$

查看答案和解析>>

科目: 来源: 题型:选择题

17.函数y=sin2x的图象平移向量($\frac{π}{3}$,0)后,新图象对应的函数为y=(  )
A.sin(2x-$\frac{2π}{3}$)B.sin(2x+$\frac{π}{3}$)C.sin(2x+$\frac{2π}{3}$)D.sin(2x-$\frac{π}{3}$)

查看答案和解析>>

科目: 来源: 题型:选择题

16.圆x2+(y-5)2=25的圆心到直线3x+4y-5=0的距离等于(  )
A.5B.4C.3D.2

查看答案和解析>>

科目: 来源: 题型:选择题

15.函数f(x)=5sin($\frac{x}{3}$-$\frac{π}{10}$)(x∈R)的最大值和最小正周期分别是(  )
A.5,2πB.1,6πC.1,2πD.5,6π

查看答案和解析>>

科目: 来源: 题型:解答题

14.已知点F1(-3,0)和点F2(3,0)是椭圆的两个焦点,且点(0,4)在椭圆上.
(1)求椭圆的方程;
(2)设点P是椭圆上的一点,若|PF1|=4,求以线段|PF2|为直径的圆的面积.

查看答案和解析>>

科目: 来源: 题型:解答题

13.已知二次函数f(x)的图象过点(0,4),且关于方程f(x)=2x有两实数根:x1=1,x2=4;函数g(x)=2x+m.
(1)求f(x)解析式;
(2)若函数h(x)=f(x)-(2t-3)x(t∈R)在区间x∈[0,1]上最小值是$\frac{7}{2}$.求t的值;
(3)设f(x)与g(x)是定义在同一区间[p,q]上的两个函数,若函数F(x)=f(x)-g(x),在x∈[p,q]上有两个不同的零点,则称f(x)和g(x)在[p,q]上是“Ω函数”,若f(x)与g(x)在[0,3]上是“Ω函数”,求m的取值范围.

查看答案和解析>>

科目: 来源: 题型:填空题

12.若C${\;}_{n}^{2}$=C${\;}_{n-1}^{2}$+C${\;}_{n-1}^{3}$(n∈N*),则($\root{3}{x}$-$\frac{1}{2\sqrt{x}}$)n的展开式的常数项为$\frac{5}{2}$.

查看答案和解析>>

科目: 来源: 题型:选择题

11.已知球O半径为$\sqrt{5}$,设S、A、B、C是球面上四个点,其中∠ABC=120°,AB=BC=2,平面SAC⊥平面ABC,则棱锥S-ABC的体积的最大值为(  )
A.$\frac{2\sqrt{3}}{3}$B.$\frac{\sqrt{3}}{2}$C.$\sqrt{3}$D.3$\sqrt{3}$

查看答案和解析>>

科目: 来源: 题型:选择题

10.设P是双曲线$\frac{{x}^{2}}{4}$-y2=1上的意一点,点P到双曲线的两条渐近线的距离分别为d1,d2,则(  )
A.d1+d2=$\frac{4\sqrt{5}}{5}$B.d1•d2=$\frac{4\sqrt{5}}{5}$C.d1+d2=$\frac{4}{5}$D.d1•d2=$\frac{4}{5}$

查看答案和解析>>

科目: 来源: 题型:解答题

9.已知椭圆:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的一个顶点为A(2,0),且焦距为2,直线l交椭圆于E、F两点(E、F与A点不重合),且满足AE⊥AF.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)O为坐标原点,若点P满足2$\overrightarrow{OP}$=$\overrightarrow{OE}$+$\overrightarrow{OF}$,求直线AP的斜率的取值范围.

查看答案和解析>>

同步练习册答案