相关习题
 0  224888  224896  224902  224906  224912  224914  224918  224924  224926  224932  224938  224942  224944  224948  224954  224956  224962  224966  224968  224972  224974  224978  224980  224982  224983  224984  224986  224987  224988  224990  224992  224996  224998  225002  225004  225008  225014  225016  225022  225026  225028  225032  225038  225044  225046  225052  225056  225058  225064  225068  225074  225082  266669 

科目: 来源: 题型:解答题

12.在△ABC中,角A,B,C所对的边分别为a,b,c,已知a=5,b=4,sin(A-B)=$\frac{3\sqrt{7}}{32}$.
(1)求sinBsinA的值;
(2)求cosC+cosA的值.

查看答案和解析>>

科目: 来源: 题型:填空题

11.在实数范围内分解因式x2-6x+8=(x-2)(x-4).

查看答案和解析>>

科目: 来源: 题型:解答题

10.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)经过直线l:x-y+1=0与y轴的交点A.
(1)若椭圆C的离心率为$\frac{\sqrt{2}}{2}$,求直线l被椭圆C所截得的弦的长度;
(2)若椭圆上总存在不同的两点关于直线l对称,求其离心率e的取值范围.

查看答案和解析>>

科目: 来源: 题型:选择题

9.三棱锥的三条棱两两互相垂直,长度分别为6,4,4,则其顶点到底面的距离为(  )
A.$\frac{14}{3}$B.2$\sqrt{17}$C.$\frac{6\sqrt{22}}{11}$D.$\frac{2\sqrt{17}}{3}$

查看答案和解析>>

科目: 来源: 题型:解答题

8.在平面直角坐标系中,曲线C1的参数方程为$\left\{\begin{array}{l}{x=acosφ}\\{y=bsinφ}\end{array}\right.$(a>b>0,φ为参数),在以O为极点,x轴的正半轴为极轴的极坐标系中,曲线C2是圆心在极轴上且经过极点的圆,已知曲线C1上的点M($\sqrt{3}$,$\frac{1}{2}$)对应的参数φ=$\frac{π}{6}$,射线θ=$\frac{π}{3}$与曲线C2交于点D(1,$\frac{π}{3}$).
(1)求曲线C1,C2的直角坐标系方程;
(2)若点A(ρ1,θ),B(ρ2,θ+$\frac{π}{2}$)都在曲线C1上,求$\frac{1}{{{ρ}_{1}}^{2}}$+$\frac{1}{{{ρ}_{2}}^{2}}$的值.

查看答案和解析>>

科目: 来源: 题型:选择题

7.如图,已知正方体ABCD-A1B1C1D1的棱长为2,P是底面ABCD内一动点,且满足PC⊥PD,则当P运动时,A1P2的最小值是(  )
A.12-2$\sqrt{2}$B.12+2$\sqrt{2}$C.10+2$\sqrt{5}$D.10-2$\sqrt{5}$

查看答案和解析>>

科目: 来源: 题型:选择题

6.已知函数f(x)=$\left\{\begin{array}{l}{{2}^{x},x≤1}\\{lo{g}_{2}(x+1),x>1}\end{array}\right.$且方程f2(x)-af(x)+$\frac{3}{2}$=0恰有四个不同实根,则实数a的取值范围是(  )
A.(-∞,-$\sqrt{6}$)∪($\sqrt{6}$,+∞)B.($\sqrt{6}$,$\frac{5}{2}$)C.(2,4)D.($\sqrt{6}$,$\frac{11}{4}$]

查看答案和解析>>

科目: 来源: 题型:填空题

5.设关于x,y的不等式组$\left\{\begin{array}{l}{8x-4≥0}\\{(y-1)(3x+y-6)≤0}\end{array}\right.$表示的平面区域为D,已知点O(0,0),A(1,0),点M是D上的动点,$\overrightarrow{OA}$•$\overrightarrow{OM}$=λ|$\overrightarrow{OM}$|,则λ的取值范围是[$\frac{\sqrt{82}}{82}$,1]∪[-1,$-\frac{\sqrt{10}}{10}$).

查看答案和解析>>

科目: 来源: 题型:填空题

4.cosα=$\frac{2}{3}$,α是第四象限角,则sinα=-$\frac{\sqrt{5}}{3}$.

查看答案和解析>>

科目: 来源: 题型:解答题

3.(1)已知tanα=2,求cos4α-2sinαcosα-sin4α的值.
(2)若函数f(x)=cos4x-2sinxcosx-sin4x,x∈[0,$\frac{π}{2}$),求f(x)的最值.

查看答案和解析>>

同步练习册答案