相关习题
 0  224931  224939  224945  224949  224955  224957  224961  224967  224969  224975  224981  224985  224987  224991  224997  224999  225005  225009  225011  225015  225017  225021  225023  225025  225026  225027  225029  225030  225031  225033  225035  225039  225041  225045  225047  225051  225057  225059  225065  225069  225071  225075  225081  225087  225089  225095  225099  225101  225107  225111  225117  225125  266669 

科目: 来源: 题型:解答题

3.设函数f(x)=$\frac{2}{3}$+$\frac{1}{x}$(x>0),数列{an}满足a1=1,an=f($\frac{1}{{a}_{n-1}}$),n∈N*,且n≥2.
(1)求数列{an}的通项公式;
(2)对n∈N*,设Sn=$\frac{1}{a_1a_2}$+$\frac{1}{a_2a_3}$+$\frac{1}{a_3a_4}$+…+$\frac{1}{a_na_{n+1}}$,若Sn≥3t恒成立,求实数t的取值范围.

查看答案和解析>>

科目: 来源: 题型:填空题

2.甲乙两人独立地对同一目标各射击一次,命中率分别为0.6和0.5,现已知目标被击中,则它是被甲击中的概率为0.75.

查看答案和解析>>

科目: 来源: 题型:选择题

1.若双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的一个焦点是圆x2+y2-10x+24=0的圆心,且虚轴长为6,则双曲线的离心率为(  )
A.$\frac{5}{4}$B.$\frac{4}{5}$C.$\frac{4}{3}$D.$\sqrt{2}$

查看答案和解析>>

科目: 来源: 题型:填空题

20.已知平面α、β,且α∩β=AB,PC⊥α,PD⊥β,C、D为垂足,PD=3,PC=4,∠CPD=60°,则P点到直线AB的距离是$\frac{2\sqrt{21}}{3}$.

查看答案和解析>>

科目: 来源: 题型:解答题

19.如图,在长方体ABCD-A1B1C1D1中,已知AB=BC=2,BB1=3,连结BC1,过B1作B1E⊥BC1交CC1于点E.
(1)求证:AC1⊥平面B1D1E;
(2)求三棱锥C1-B1D1E的体积;
(3)求C1到面B1D1E的距离.

查看答案和解析>>

科目: 来源: 题型:解答题

18.已知函数h(x)=x-(a+1)lnx-$\frac{a}{x}$,求函数h(x)的单调递减区间.

查看答案和解析>>

科目: 来源: 题型:填空题

17.(文)对任意实数x,符号[x]表示x的整数部分,即[x]是不超过x的最大整数,在实数轴R(箭头向右)上[x]是在点x左侧的第一个整数点,当x是整数时[x]就是x.这个函数[x]叫做“取整函数”,它在生产实践中有广泛的应用.那么[log21]+[log22]+[log23]+[log24]+…+[log2512]=3595.

查看答案和解析>>

科目: 来源: 题型:填空题

16.已知函数f(x)=$\left\{{\begin{array}{l}{{x^2}-4\begin{array}{l},{0≤x≤2}\end{array}}\\{2x\begin{array}{l},{x>2}\end{array}}\end{array}}\right.{,_{\;}}$则f(2)=0.

查看答案和解析>>

科目: 来源: 题型:选择题

15.已知△ABC中,∠C=$\frac{π}{2}$,∠B=$\frac{π}{6}$,AC=2,M是AB的中点,沿直线CM将CBM折起,若AB=$\sqrt{10}$,设二面角B-CM-A的平面角为α,则α的大小为(  )
A.$\frac{π}{4}$B.$\frac{π}{6}$C.$\frac{π}{3}$D.$\frac{π}{2}$

查看答案和解析>>

科目: 来源: 题型:解答题

14.把一个三角形分割成几个小正三角形,有两种简单的“基本分割法”.
基本分割法1:如图①,把一个正三角形分割成4个小正三角形,增加3个.
基本分割法2:如图②,把一个正三角形分割成6个小正三角形,增加5个.
请你运用上述两种“基本分割法”,解决下列问题:

(1)把图③的正三角形分割成9个小正三角形;
(2)把图④的正三角形分割成10个小正三角形;
(3)把图⑤的正三角形分割成11个小正三角形;
(4)把图⑥的正三角形分割成12个小正三角形.

查看答案和解析>>

同步练习册答案