相关习题
 0  224957  224965  224971  224975  224981  224983  224987  224993  224995  225001  225007  225011  225013  225017  225023  225025  225031  225035  225037  225041  225043  225047  225049  225051  225052  225053  225055  225056  225057  225059  225061  225065  225067  225071  225073  225077  225083  225085  225091  225095  225097  225101  225107  225113  225115  225121  225125  225127  225133  225137  225143  225151  266669 

科目: 来源: 题型:选择题

3.过平面区域$\left\{\begin{array}{l}{x-y+2≥0}\\{y+a≥0}\\{x+y+2≤0}\end{array}\right.$,若z=x+2y的最小值为-8,则实数a=(  )
A.-6B.-5C.-4D.2

查看答案和解析>>

科目: 来源: 题型:选择题

2.盒子中装有5个零件,其中有2个次品,现从中随机抽取2个,则恰有一个次品的概率为(  )
A.$\frac{1}{5}$B.$\frac{2}{5}$C.$\frac{3}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目: 来源: 题型:解答题

1.已知数列{an}是等差数列,其前n项和Sn满足Sn=n2+3n+a,数列{bn}首项b1=2,且满足数列{2${\;}^{{b}_{n}}$}是公比为4的等比数列.
(1)求a的值及数列{an},{bn}的通项公式;
(2)记数列{$\frac{1}{{a}_{n}{b}_{n}}$}的前n项和为Tn,对任意的n∈N*都有λTn<1成立,求实数λ的取值范围.

查看答案和解析>>

科目: 来源: 题型:选择题

20.已知函数f(x)=$\left\{\begin{array}{l}{kx+2,x≥0}\\{(\frac{1}{2})^{x},x<0}\end{array}\right.$,则下列关于函数y=f[f(x)]-$\frac{3}{2}$的零点个数的判断正确的是(  )
A.当k≥0时,有1个零点;当k<0时,有2个零点
B.当k≥0时,没有零点;当-$\frac{1}{2}$<k≤-$\frac{1}{4}$时,有3个零点,当k≤-$\frac{1}{2}$或-$\frac{1}{4}$<k<0有2个零点
C.当k≥0时,没有零点;当-$\frac{1}{2}$<k<0时,有3个零点,当k≤-$\frac{1}{2}$有2个零点
D.当k≥0时,没有零点;当-$\frac{1}{2}$≤k<-$\frac{1}{4}$时,有3个零点,当k<-$\frac{1}{2}$或-$\frac{1}{4}$≤k<0有2个零点

查看答案和解析>>

科目: 来源: 题型:选择题

19.定义在R上的函数f(x)满足f(x+2)=$\frac{1}{2}$f(x),当x∈[0,2)时,f(x)=$\left\{\begin{array}{l}{\frac{1}{2}-2{x}^{2},0≤x<1}\\{-{2}^{1-|x-\frac{3}{2}|},1≤x<2}\end{array}\right.$,函数g(x)=(2x-x2)ex+m,若?x1∈[-4,-2),?x2∈[-1,2],使得不等式f(x1)-g(x2)≥0成立,则实数m的取值范围是(  )
A.(-∞,-8]B.(-∞,$\frac{3}{e}$+8]C.[$\frac{3}{e}$-8,+∞)D.(-∞,$\frac{3}{e}$-8]

查看答案和解析>>

科目: 来源: 题型:解答题

18.已知实数x满足($\frac{1}{3}$)2x-4-($\frac{1}{3}$)x-($\frac{1}{3}$)x-2+$\frac{1}{9}$≤0且f(x)=log2$\frac{x}{2}$$lo{g}_{\sqrt{2}}\frac{\sqrt{x}}{2}$
(1)求实数x的取值范围;
(2)求f(x)的最大值和最小值,并求此时x的值.

查看答案和解析>>

科目: 来源: 题型:解答题

17.如图,直三棱柱ABC-A1B1C1中,AC=BC=$\frac{1}{2}$AA1=1,D是棱AA1的中点,DC1⊥BD.
(1)证明:DC1⊥BC;
(2)若∠ACB=90°,求点C到平面BDC1的距离.

查看答案和解析>>

科目: 来源: 题型:解答题

16.已知f(x)=-2lnx+2mx2+(8-m)x,m∈R.
(1)若y=f(x)在x=2处有极值,求m的值;
(2)求y=f(x)在[m2,m]上的最小值.

查看答案和解析>>

科目: 来源: 题型:解答题

15.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的离心率e=$\sqrt{2}$,一条准线方程为x=$\frac{\sqrt{2}}{2}$,直线l与双曲线右支及双曲线的渐近线交于A、B、C、D四点,四个点的顺序如图所示.
(1)求该双曲线的方程;
(2)求证:|AB|=|CD|.

查看答案和解析>>

科目: 来源: 题型:选择题

14.如图,双曲线的中心在坐标原点O,焦点在x轴上,两条渐近线分别为11,12,经过右焦点F垂直于11的直线分别交11,12于A,B两点,若|$\overrightarrow{OA}$|,|$\overrightarrow{AB}$|,|$\overrightarrow{OB}$|依次成等差数列,则该双曲线的离心率为(  )
A.$\frac{\sqrt{5}}{2}$B.$\sqrt{2}$C.2D.$\sqrt{5}$

查看答案和解析>>

同步练习册答案