相关习题
 0  225003  225011  225017  225021  225027  225029  225033  225039  225041  225047  225053  225057  225059  225063  225069  225071  225077  225081  225083  225087  225089  225093  225095  225097  225098  225099  225101  225102  225103  225105  225107  225111  225113  225117  225119  225123  225129  225131  225137  225141  225143  225147  225153  225159  225161  225167  225171  225173  225179  225183  225189  225197  266669 

科目: 来源: 题型:解答题

14.已知函数f(x)=lnx+$\frac{k}{x}$,k∈R.
(1)若k=1,求函数f(x)在点(1,f(1))处的切线方程;
(2)若k>$\frac{1}{2}$,令h(x)=f(x)+(k-1)x,求函数h(x)的单调区间;
(3)设g(x)=xf(x)-k,若对任意的两个实数x1,x2满足0<x1<x2,总存在x0>0,使得g′(x0)=$\frac{{g({x_1})-g({x_2})}}{{{x_1}-{x_2}}}$成立,证明:x0>x1

查看答案和解析>>

科目: 来源: 题型:填空题

13.设P为直线3x+4y+3=0上的动点,过点P做圆C:x2+y2-2x-2y+1=0的两条切线,切点分别为A,B,当四边形PACB的面积最小时,∠APB=$\frac{π}{3}$.

查看答案和解析>>

科目: 来源: 题型:解答题

12.在四棱锥P-ABCD中,底面ABCD是一直角梯形,PA⊥底面ABCD,∠BAD=90°,AD∥BC,AB=BC=1,AD=AP=2,E是PD的中点.
(1)求异面直线AE与CD所成角的大小;
(2)求直线BP与平面PCD所成角的正弦值.

查看答案和解析>>

科目: 来源: 题型:填空题

11.给出下列命题:
(1)若f(x-1)=f(1-x),则函数f(x)的图象关于直线x=1对称;
(2)y=f(x-1)与y=f(1-x)的图象关于直线x=0对称;
(3)$y={({\frac{1}{2}})^{|x|}}-{sin^2}x+2015$无最大值也无最小值;
(4)y=$\frac{2tanx}{1-ta{n}^{2}x}$的最小正周期为π;
(5)y=sinx(0≤x≤2π)有对称轴两条,对称中心三个; 则正确命题是没有.

查看答案和解析>>

科目: 来源: 题型:解答题

10.如图,正方体ABCD-A1B1C1D1的棱长为2,P是BC的中点,点Q是棱CC1上的动点.
(1)点Q在何位置时,直线D1Q,DC,AP交于一点,并说明理由;
(2)求三棱锥B1-DBQ的体积;
(3)若点Q是棱CC1的中点时,记过点A,P,Q三点的平面截正方体所得截面为S,求截面S的面积.

查看答案和解析>>

科目: 来源: 题型:解答题

9.如图所示,在几何体ABCDE中,AB=BC=CA=EB=EC=2$\sqrt{3}$,DE=$\sqrt{2}$,点D在底面ABC上的射影O为底面三角形ABC的中心,平面BEC⊥平面ABC.
(1)判断A,D,E,O四点是否共面,并证明你的结论;
(2)求DE与平面ABD所成的角的正弦值.

查看答案和解析>>

科目: 来源: 题型:填空题

8.设P是双曲线$\frac{x^2}{4}-\frac{y^2}{2}=1$上的动点,若P到两条渐近线的距离分别为d1,d2,则d1•d2=$\frac{4}{3}$.

查看答案和解析>>

科目: 来源: 题型:填空题

7.设O为坐标原点,若直线$l:y-\frac{1}{2}=0$与曲线$τ:\sqrt{1-{x^2}}-y=0$相交于A、B点,则扇形AOB的面积为$\frac{π}{3}$.

查看答案和解析>>

科目: 来源: 题型:填空题

6.如图程序运行的结果是96.

查看答案和解析>>

科目: 来源: 题型:解答题

5.已知函数f(x)=$\frac{ax}{{{x^2}+1}}+b{x^2}$为奇函数,且f(1)=$\frac{1}{2}$.
(1)求a,b的值;
(2)判断函数f(x)在(-1,1)上的单调性,并用定义加以证明.

查看答案和解析>>

同步练习册答案