相关习题
 0  225029  225037  225043  225047  225053  225055  225059  225065  225067  225073  225079  225083  225085  225089  225095  225097  225103  225107  225109  225113  225115  225119  225121  225123  225124  225125  225127  225128  225129  225131  225133  225137  225139  225143  225145  225149  225155  225157  225163  225167  225169  225173  225179  225185  225187  225193  225197  225199  225205  225209  225215  225223  266669 

科目: 来源: 题型:解答题

14.已知数列{an}的通项公式为an=1g($\sqrt{{n}^{2}+1}$-n),判断数列{an}是否为单调数列,如是,请说明{an}的单调性;如不是,请说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

13.一个玩具盘由一个直径为2米的半圆O和一个矩形ABCD构成,AB=1米,如图所示,小球从A点出发以大小为5v的速度沿半圆O轨道滚到某点E处,经弹射器以6v的速度沿与点E切线垂直的方向弹射到落袋区BC内,落点记为F,设∠AOE=θ弧度,小球从A到F所需时间为T.
(1)试将T表示为θ的函数T(θ),并写出定义域;
(2)求时间T最短时θ的值.

查看答案和解析>>

科目: 来源: 题型:填空题

12.在平面直角坐标系xOy中,双曲线$\frac{{x}^{2}}{2}$-y2=1的实轴长为2$\sqrt{2}$.

查看答案和解析>>

科目: 来源: 题型:填空题

11.已知数列{an}满足n2-kan-1=0,且a4=5,则a7=16.

查看答案和解析>>

科目: 来源: 题型:解答题

10.已知函数f(x)=lnx+$\frac{a}{x}$(a>0).
(Ⅰ)求函数f(x)在[1,+∞)上的最小值;
(Ⅱ)若存在三个不同的实数xi(i=1,2,3)满足f(x)=ax.
(i)证明:?a∈(0,1),f($\frac{{a}^{2}}{2}$)>$\frac{{a}^{3}}{2}$;
(ii)求实数a的取值范围及x1•x2•x3的值.

查看答案和解析>>

科目: 来源: 题型:解答题

9.已知函数f(x)=$\frac{lnx}{x}$+$\frac{x+1}{x}$a.
(1)当a=$\frac{1}{2}$时,求函数f(x)的极大值,并写出单调区间;
(2)当a=1时,若对任意的x>1,恒有ln(x-1)+k+1≤kx成立,求k的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

8.设椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$(a>b>0)的左、右焦点分别为F1,F2,以F1为圆心,短半轴长为半径的圆与y轴相切,且与直线x-$\sqrt{3}$y-2=0相切.
(1)求椭圆的标准方程;
(2)已知点P($\sqrt{6}$,0),直线l与椭圆交于A、B两点,且满足$\overrightarrow{PA}$•$\overrightarrow{PB}$=-2,试问直线l是否恒过定点,若恒过定点,请给出证明,并求出该定点的坐标;若不过,请说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

7.已知圆C与y轴相切,圆心在直线x-2y=0上,且被x轴的正半轴截得的弦长为2$\sqrt{3}$.
(1)求圆C的方程;
(2)若点P(x,y)在圆C上,x2+y2-4y的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

6.已知点A(-$\sqrt{3}$,2),B($\sqrt{3}$,0),且AB为圆C的直径.
(1)求圆C的方程;
(2)设点P为圆C上的任意一点,过点P作倾斜角为120°的直线l,且l与直线x=$\sqrt{3}$相交于点M,求|PM|的最大值及此时直线l的方程.

查看答案和解析>>

科目: 来源: 题型:填空题

5.若a=${∫}_{0}^{1}$x2dx,则二项式(a$\sqrt{x}$-$\frac{1}{\sqrt{x}$)6的展开式中的常数项为-$\frac{20}{27}$.

查看答案和解析>>

同步练习册答案