相关习题
 0  225056  225064  225070  225074  225080  225082  225086  225092  225094  225100  225106  225110  225112  225116  225122  225124  225130  225134  225136  225140  225142  225146  225148  225150  225151  225152  225154  225155  225156  225158  225160  225164  225166  225170  225172  225176  225182  225184  225190  225194  225196  225200  225206  225212  225214  225220  225224  225226  225232  225236  225242  225250  266669 

科目: 来源: 题型:解答题

7.某良种培育基地正在培育一种小麦新品种A,将其与原有的一个优良品种B进行对照试验,良种小麦各种植了25亩,所得亩产数据(单位:千克)如下:
品种A:367,359,367,368,375,388,392,399,400,405,412,414,415,421,423,423,427,430,430,434,443,445,445,451,454,
品种B:363,371,374,383,385,386,391,392,394,394,395,397,397,400,401,401,403,406,407,410,412,415,416,422,430
(1)完成数据的茎叶图;
(2)现从品种A中随机抽取了6个数据:359,367,400,388,434,392,计算该组数据的平均值、方差、标准差;
(3)通过观察茎叶图,对品种A与B的亩产量极其稳定性进行比较,写出统计结论.

查看答案和解析>>

科目: 来源: 题型:填空题

6.某工厂生产甲、乙、丙三种不同型号的产品,产品数量之比依次为5:2:3,现用分层抽样的方法抽出一个容量为n的样本,样本中甲型号产品共15件,那么样本容量n=30.

查看答案和解析>>

科目: 来源: 题型:填空题

5.点(0,-1)到直线x+2y-3=0的距离为$\sqrt{5}$.

查看答案和解析>>

科目: 来源: 题型:选择题

4.方程$\frac{{x}^{2}}{5-m}$+$\frac{{y}^{2}}{m+3}$=1表示椭圆的一个必要不充分条件是(  )
A.m∈(-5,3)B.m∈(-3,5)C.m∈(-3,1)∪(1,5)D.m∈(-5,1)∪(1,3)

查看答案和解析>>

科目: 来源: 题型:选择题

3.抛物线x2=-$\frac{1}{2}$y的准线方程是(  )
A.x=$\frac{1}{2}$B.x=$\frac{1}{8}$C.y=$\frac{1}{2}$D.y=$\frac{1}{8}$

查看答案和解析>>

科目: 来源: 题型:选择题

2.下列算法的理解不正确的是(  )
A.算法需要一步步执行,且每一步都能得到唯一的结果
B.算法的一个共同特点是对一类问题都有效而不是个别问题
C.任何问题都可以用算法来解决
D.算法一般是机械的,有时要进行大量重复的计算,它的优点是一种通法

查看答案和解析>>

科目: 来源: 题型:解答题

1.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{1}{2}$,左右焦点分别为F1,F2,点A在椭圆C上,△AF1F2的周长为6.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点A作直线l与椭圆C的另一个交点为B,若以AB为直径的圆恰好过坐标原点O,求证:$\frac{|\overrightarrow{OA}|•|\overrightarrow{OB}|}{|\overrightarrow{AB}|}$为定值.

查看答案和解析>>

科目: 来源: 题型:填空题

20.某几何体的三视图如图,则该几何体的体积为$\frac{5}{6}$.

查看答案和解析>>

科目: 来源: 题型:选择题

19.阅读如图的程序框图,运行相应的程序,则输出的S的值为(  )
A.$\frac{1}{2}$B.$\frac{2}{3}$C.$\frac{3}{4}$D.$\frac{4}{5}$

查看答案和解析>>

科目: 来源: 题型:解答题

18.如图,椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的焦点为F1、F2,过F2作垂直于x轴的直线交椭圆于P点(点P在x轴上方),连结PF1并延长交椭圆于另一点Q.设$\overrightarrow{P{F_1}}=λ\overrightarrow{{F_1}Q}$(2≤λ≤$\frac{7}{3}$).
(1)若PF1=$\frac{6}{5}\sqrt{5}$,PF2=$\frac{4}{5}\sqrt{5}$,求椭圆的方程;
(2)求椭圆的离心率的范围;
(3)当离心率最大时,过点P作直线l交椭圆于点R,设直线PQ的斜率为k1,直线RF1的斜率为k2,若k1=$\frac{3}{2}{k_2}$,求直线l的斜率k.

查看答案和解析>>

同步练习册答案