相关习题
 0  225067  225075  225081  225085  225091  225093  225097  225103  225105  225111  225117  225121  225123  225127  225133  225135  225141  225145  225147  225151  225153  225157  225159  225161  225162  225163  225165  225166  225167  225169  225171  225175  225177  225181  225183  225187  225193  225195  225201  225205  225207  225211  225217  225223  225225  225231  225235  225237  225243  225247  225253  225261  266669 

科目: 来源: 题型:解答题

8.已知函数f(x)=2sin2x+sin2x-1.
(1)求函数f(x)的单调递增区间;
(2)设$f({\frac{x_0}{2}})=cos({\frac{π}{6}+α})cos({\frac{π}{6}-α})+{sin^2}α$,其中0<x0<π,求tanx0的值.

查看答案和解析>>

科目: 来源: 题型:填空题

7.小明有4枚完全相同的硬币,每个硬币都分正反两面.他把4枚硬币叠成一摞(如图),则所有相邻两枚硬币中至少有一组同一面不相对的概率是$\frac{7}{8}$.

查看答案和解析>>

科目: 来源: 题型:解答题

6.已知圆C:x2+y2-6x-8y=0和x轴交于原点O和定点A,点B是动点,且∠OBA=90°,0B交⊙C于M,AB交⊙C于N,求MN的中点P的轨迹.

查看答案和解析>>

科目: 来源: 题型:解答题

5.已知椭圆Γ:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),过原点的两条直线l1和l2分别与C交于点A、B和C、D,得到平行四边形ACBD.
(1)若a=4,b=3,且ACBD为正方形时,求该正方形的面积S;
(2)若直线l1的方程为bx-ay=0,l1和l2关于y轴对称,Γ上任意一点P到l1和l2的距离分别为d1和d2,证明:d12+d22=$\frac{2{a}^{2}{b}^{2}}{{a}^{2}+{b}^{2}}$;
(3)当ACBD为菱形,且圆x2+y2=1内切于菱形ACBD时,求a,b满足的关系式.

查看答案和解析>>

科目: 来源: 题型:填空题

4.已知△ABC中,AB=5,AC=8.∠BAC=60°,I为△ABC内心,满足$\overrightarrow{AI}$=m$\overrightarrow{BI}$+n$\overrightarrow{CI}$,则7(|m|+|n|)=13.

查看答案和解析>>

科目: 来源: 题型:填空题

3.在△ABC中,内角A、B、C的对边分别为a、b、c,且c=2,b=$\sqrt{2}$a,则△ABC面积的最大值为2$\sqrt{2}$.

查看答案和解析>>

科目: 来源: 题型:选择题

2.直线$\left\{\begin{array}{l}x={x_0}+at\\ y={y_0}+bt\end{array}\right.$(t为参数)上的两个点A,B对应参数分别为t1,t2,则|AB|=(  )
A.|t1-t2|B.$\sqrt{{a^2}+{b^2}}|{{t_1}-{t_2}}|$C.$\frac{{|{{t_1}-{t_2}}|}}{{\sqrt{{a^2}+{b^2}}}}$D.$\frac{{|{{t_1}-{t_2}}|}}{{{a^2}+{b^2}}}$

查看答案和解析>>

科目: 来源: 题型:解答题

1.已知圆F的方程为x2+y2-2x-2y-6=0,以坐标原点O为圆心的圆O与圆F相切.
(1)求圆O的方程;
(2)若圆O上有两点M,N关于直线x+2y=0对称,且|$\overrightarrow{MN}$|=2$\sqrt{3}$,试求直线MN的方程;
(3)若满足(2)的圆O与x轴相交于A,B两点,圆O内的动点P使得|$\overrightarrow{PA}$|,|$\overrightarrow{PO}$|,|$\overrightarrow{PB}$|成等比数列,试求$\overrightarrow{PA}•$$\overrightarrow{PB}$的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

9.函数y=Asin(ωx+φ)(A>0,ω>0,0<φ<π)的图象的两个相邻零点为(-$\frac{π}{6}$,0)和($\frac{π}{2}$,0),且该函数的最大值为2,最小值为-2,则该函数的解析式为y=2sin($\frac{3}{2}$x+$\frac{π}{4}$).

查看答案和解析>>

科目: 来源: 题型:填空题

8.已知复数z1=$\frac{1}{2}$+$\frac{\sqrt{3}}{2}$i,z2=$\frac{\sqrt{3}}{2}$-$\frac{1}{2}$i,且z=z1+$\overline{{z}_{2}}$,则|z|=$\frac{\sqrt{2}+\sqrt{6}}{2}$.

查看答案和解析>>

同步练习册答案