相关习题
 0  225171  225179  225185  225189  225195  225197  225201  225207  225209  225215  225221  225225  225227  225231  225237  225239  225245  225249  225251  225255  225257  225261  225263  225265  225266  225267  225269  225270  225271  225273  225275  225279  225281  225285  225287  225291  225297  225299  225305  225309  225311  225315  225321  225327  225329  225335  225339  225341  225347  225351  225357  225365  266669 

科目: 来源: 题型:选择题

4.设D为△ABC所在平面内一点,$\overrightarrow{BC}$=3$\overrightarrow{CD}$,则(  )
A.$\overrightarrow{AD}$=-$\frac{1}{3}$$\overrightarrow{AB}$+$\frac{4}{3}$$\overrightarrow{AC}$B.$\overrightarrow{AD}$=$\frac{1}{3}$$\overrightarrow{AB}$-$\frac{4}{3}$$\overrightarrow{AC}$C.$\overrightarrow{AD}$=$\frac{4}{3}$$\overrightarrow{AB}$+$\frac{1}{3}$$\overrightarrow{AC}$D.$\overrightarrow{AD}$=$\frac{4}{3}$$\overrightarrow{AB}$+$\frac{1}{3}$$\overrightarrow{AC}$

查看答案和解析>>

科目: 来源: 题型:选择题

3.设函数f(x)=4x+2x-2的零点为x1,g(x)的零点为x2,若|x1-x2|≤$\frac{1}{4}$,则g(x)可以是(  )
A.g(x)=$\sqrt{x}$-1B.g(x)=2x-1C.$g(x)=ln({x-\frac{1}{2}})$D.g(x)=4x-1

查看答案和解析>>

科目: 来源: 题型:解答题

2.给定两命题:已知p:-2≤x≤10;q:1-m≤x≤1+m(m>0).若¬p是¬q的必要而不充分条件,求实数m的取值范围.

查看答案和解析>>

科目: 来源: 题型:选择题

1.“2<x<3”是“x>0”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目: 来源: 题型:解答题

20.已知△ABC的顶点坐标A(5,1),AB边上的中线CM所在直线方程为2x-y-5=0,AC边上的高BH所在直线方程为x-2y-5=0,求顶点C的坐标,|AC|的值,及直线BC的方程.

查看答案和解析>>

科目: 来源: 题型:解答题

19.(1)计算${(-\frac{27}{8})^{-\frac{2}{3}}}$+$\frac{lo{g}_{8}27}{lo{g}_{2}3}$+($\sqrt{2}$-$\sqrt{3}$)0-log31+2lg5+lg4-5${\;}^{lo{g}_{5}2}$
(2)已知x${\;}^{\frac{1}{2}}$+x${\;}^{-\frac{1}{2}}$=3,求x+x-1的值.

查看答案和解析>>

科目: 来源: 题型:填空题

18.经过点A(3,2)且与直线4x+y-2=0平行的直线方程是4x+y-14=0.

查看答案和解析>>

科目: 来源: 题型:选择题

17.下列大小关系正确的是(  )
A.log40.3<0.43<30.4B.0.43<30.4<log40.3
C.0.43<log40.3<0.30.4D.log40.3<0.30.4<0.43

查看答案和解析>>

科目: 来源: 题型:解答题

16.已知函数f(x)=x3+x-16.
(1)求满足斜率为4的曲线的切线方程;
(2)求曲线y=f(x)在点(2,-6)处的切线的方程;
(3)直线l为曲线y=f(x)的切线,且经过原点,求直线l的方程.

查看答案和解析>>

科目: 来源: 题型:解答题

15.请用函数求导法则求出下列函数的导数.
(1)y=esinx
(2)y=$\frac{x+3}{x+2}$
(3)y=ln(2x+3)
(4)y=(x2+2)(2x-1)
(5)$y=cos(2x+\frac{π}{3})$.

查看答案和解析>>

同步练习册答案