相关习题
 0  225222  225230  225236  225240  225246  225248  225252  225258  225260  225266  225272  225276  225278  225282  225288  225290  225296  225300  225302  225306  225308  225312  225314  225316  225317  225318  225320  225321  225322  225324  225326  225330  225332  225336  225338  225342  225348  225350  225356  225360  225362  225366  225372  225378  225380  225386  225390  225392  225398  225402  225408  225416  266669 

科目: 来源: 题型:解答题

13.在直角坐标系xOy中,圆C的方程为(x-1)2+y2=1.以 O为极点,x轴的非负半轴为极轴建立极坐标系.
(1)求圆C的极坐标方程;
(2)射线OM:$θ=\frac{π}{4}$与圆C的交点为O、P两点,求P点的极坐标.

查看答案和解析>>

科目: 来源: 题型:解答题

12.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$,其中$e=\frac{1}{2}$(e为椭圆离心率),焦距为2,过点M(4,0)的直线l与椭圆C交于点A,B,点B在AM之间.又点A,B的中点横坐标为$\frac{4}{7}$.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)求直线l的方程.

查看答案和解析>>

科目: 来源: 题型:填空题

11.在极坐标系中,设曲线ρ=2和ρcosθ=1相交于点A,B,则|AB|=2$\sqrt{3}$.

查看答案和解析>>

科目: 来源: 题型:填空题

10.过椭圆$\frac{x^2}{9}+\frac{y^2}{16}=1$的一个焦点F1的弦AB与另一个焦点F2围成的三角形△ABF2的周长是16.

查看答案和解析>>

科目: 来源: 题型:解答题

9.已知双曲线C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的离心率$e=\sqrt{2}$,F1、F2为其左右焦点,点P在C上,且$\overrightarrow{P{F_2}}•\overrightarrow{{F_1}{F_2}}=0$,$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}=2$,O是坐标原点.
(1)求双曲线C的方程;
(2)过F2的直线l与双曲线C交于A,B两点,求$\overrightarrow{{F_1}A}•\overrightarrow{{F_1}B}$的取值范围.

查看答案和解析>>

科目: 来源: 题型:选择题

8.已知F1,F2分别是双曲线C:$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{9}$=1的左,右焦点,M是C上的一点,且|MF2|=10,则|MF1|=(  )
A.10B.8C.4D.2

查看答案和解析>>

科目: 来源: 题型:解答题

7.假设某种设备使用的年限x(年)与所支出的维修费用y(元)有以下统计资料:
使用年限x23456
维修费用y24567
若由资料知y对x呈线性相关关系.试求:
(1)求$\overline x,\overline y$;
(2)线性回归方程$\hat y=\hat bx+\hat a$;
(3)估计使用10年时,维修费用是多少?
(参考公式:$\hat b=\frac{{\sum_{i=1}^n{({x_i}}-\bar x)({y_i}-\bar y)}}{{\sum_{i=1}^n{{{({x_i}-\bar x)}^2}}}}=\frac{{\sum_{i=1}^n{{x_i}{y_i}}-n\bar x\bar y}}{{\sum_{i=1}^n{{x_i}^2-n{{\bar x}^2}}}}$,$\hat a=\bar y-\hat b\bar x$)

查看答案和解析>>

科目: 来源: 题型:解答题

6.设函数f(x)=|2x+3|+|x-1|.
(Ⅰ)解不等式f(x)>4;
(Ⅱ)若存在$x∈[{-\frac{3}{2},1}]$使不等式a+1>f(x)成立,求实数a的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

5.如图,四边形ABCD是矩形,AB=1,$AD=\sqrt{2}$,E是AD的中点,BE与AC交于点F,GF⊥平面ABCD.
(Ⅰ)求证:AF⊥面BEG;
(Ⅱ)若AF=FG,求点E到平面ABG距离.

查看答案和解析>>

科目: 来源: 题型:选择题

4.如图,正方形ABCD中,E为DC的中点,若$\overrightarrow{AE}$=λ$\overrightarrow{AB}$+μ$\overrightarrow{AC}$,则λ+μ的值为(  )
A.$\frac{1}{2}$B.$-\frac{1}{2}$C.1D.-1

查看答案和解析>>

同步练习册答案