相关习题
 0  225223  225231  225237  225241  225247  225249  225253  225259  225261  225267  225273  225277  225279  225283  225289  225291  225297  225301  225303  225307  225309  225313  225315  225317  225318  225319  225321  225322  225323  225325  225327  225331  225333  225337  225339  225343  225349  225351  225357  225361  225363  225367  225373  225379  225381  225387  225391  225393  225399  225403  225409  225417  266669 

科目: 来源: 题型:解答题

3.已知$cosα=\frac{{\sqrt{5}}}{5},cosβ=\frac{3}{5}$,其中α,β都是锐角.求:
(I)sin(α-β)的值;
(Ⅱ)tan(α+β)的值.

查看答案和解析>>

科目: 来源: 题型:选择题

2.在△ABC中,已知D为AB上一点,若$\overrightarrow{AD}=2\overrightarrow{DB}$,则$\overrightarrow{CD}$=(  )
A.$\frac{2}{3}\overrightarrow{CA}+\frac{1}{3}\overrightarrow{CB}$B.$\frac{1}{3}\overrightarrow{CA}+\frac{2}{3}\overrightarrow{CB}$C.$2\overrightarrow{CA}-\overrightarrow{CB}$D.$\overrightarrow{CA}-2\overrightarrow{CB}$

查看答案和解析>>

科目: 来源: 题型:解答题

1.设函数f(x)=$\overrightarrow{a}$•($\overrightarrow{b}$+$\overrightarrow{c}$),其中向量$\overrightarrow{a}$=(sinx,-cosx),$\overrightarrow{b}$=(sinx,-3cosx),$\overrightarrow{c}$=(-cosx,sinx).(a∈R).
(1)求函数f(x)的最大值和最小正周期;
(2)求函数f(x)的单调增区间.

查看答案和解析>>

科目: 来源: 题型:解答题

20.如图,ABCD是正方形,O是正方形的中心,PO⊥底面ABCD,E是PC的中点,$PO=\sqrt{2},AB=2$.求证:
(1)平面PAC⊥平面BDE;
(2)求二面角E-BD-C的大小.

查看答案和解析>>

科目: 来源: 题型:解答题

19.直线l过抛物线y2=4x的焦点,与抛物线交于A,B两点,若|AB|=8,求直线l的方程.

查看答案和解析>>

科目: 来源: 题型:选择题

18.将曲线y=sin3x变为y=2sinx的伸缩变换是(  )
A.$\left\{\begin{array}{l}{x=3x′}\\{y=\frac{1}{2}y′}\end{array}\right.$B.$\left\{\begin{array}{l}{x′=3x}\\{y′=\frac{1}{2}y}\end{array}\right.$C.$\left\{\begin{array}{l}{x=3x′}\\{y=2y′′}\end{array}\right.$D.$\left\{\begin{array}{l}{x′=3x}\\{y′=2y}\end{array}\right.$

查看答案和解析>>

科目: 来源: 题型:解答题

17.已知抛物线C:y2=2px(p>0)上一点M(3,m)到焦点的距离等于5.
(Ⅰ)求抛物线C的方程和m的值;
(Ⅱ)直线y=x+b与抛物线C交于A、B两点,且|AB|=4$\sqrt{2}$,求直线的方程.

查看答案和解析>>

科目: 来源: 题型:选择题

16.已知双曲线方程$\frac{x^2}{4}-\frac{y^2}{5}$=1,则它的焦点到渐近线的距离为(  )
A.$\sqrt{5}$B.1C.2D.$\sqrt{3}$

查看答案和解析>>

科目: 来源: 题型:填空题

15.在正方体ABCD-A1B1C1D1中,P为AB的中点,则二面角B-CA1-P的大小为$\frac{π}{6}$.

查看答案和解析>>

科目: 来源: 题型:解答题

14.在极坐标系中,曲线C的方程为${ρ^2}=\frac{3}{{1+2{{cos}^2}θ}}$,点$R(2\sqrt{2},\frac{π}{4})$,以极点为原点,极轴为x轴的正半轴,建立平面直角坐标系,两坐标系中取相同的长度单位.
(1)求曲线C的直角坐标方程及点R的直角坐标;
(2)设P为曲线C上一动点,以PR为对角线的矩形PQRS的一边垂直于极轴,求矩形PQRS周长的最小值及此时点P的直角坐标.

查看答案和解析>>

同步练习册答案