相关习题
 0  225262  225270  225276  225280  225286  225288  225292  225298  225300  225306  225312  225316  225318  225322  225328  225330  225336  225340  225342  225346  225348  225352  225354  225356  225357  225358  225360  225361  225362  225364  225366  225370  225372  225376  225378  225382  225388  225390  225396  225400  225402  225406  225412  225418  225420  225426  225430  225432  225438  225442  225448  225456  266669 

科目: 来源: 题型:解答题

11.在极坐标系中,圆C的极坐标方程为${ρ^2}-8ρsin(θ-\frac{π}{3})+13=0$,已知$A(1,\frac{3π}{2}),B(3,\frac{3π}{2})$,P为圆C上一点,求△PAB面积的最小值.

查看答案和解析>>

科目: 来源: 题型:解答题

10.经市场调查,某旅游城市在过去的一个月内(以30天计),第t天(1≤t≤30,t∈N*)的旅游人数f(t)(单位:万人)近似地满足f(t)=4+$\frac{1}{t}$,而人均日消费俄g(t)(单位:元)近似地满足g(t)=$\left\{\begin{array}{l}{t+100,1≤t≤20}\\{-t+140,20<t≤30}\end{array}\right.$.
(Ⅰ)试求所有游客在该城市旅游的日消费总额W(t)(单位:万元)与时间t(1≤t≤30,t∈N*)的函数表达式;
(Ⅱ)求所有游客在该城市旅游的日消费总额的最小值.

查看答案和解析>>

科目: 来源: 题型:解答题

9.第二届世界互联网大会在浙江省乌镇开幕后,某科技企业为抓住互联网带来的机遇,决定开发生产一款大型电子设备.生产这种设备的年固定成本为500万元,每生产x台,需另投入成本为C(x)万元.若年产量不足80台时,C(x)=$\frac{1}{2}$x2+40x(万元);若年产量不小于80台时,C(x)=101x+$\frac{8100}{x}$-2180(万元).每台设备售价为100万元,通过市场分析,该企业生产的电子设备能全部售完.
(1)求年利润y(万元)关于年产量x(台)的函数关系式;
(2)年产量为多少台时,该企业在这一电子设备的生产中所获利润最大?

查看答案和解析>>

科目: 来源: 题型:解答题

8.已知极坐标系的极点与直角坐标系的原点重合,极轴与x轴的正半轴重合,若直线l的极坐标方程为ρsin(θ-$\frac{π}{4}$)=3$\sqrt{2}$.
(1)把直线l的极坐标方程化为直角坐标系方程;
(2)已知P为曲线$\left\{\begin{array}{l}{x=4cosθ}\\{y=3sinθ}\end{array}\right.$,(θ为参数)上一点,求P到直线l的距离的最大值.

查看答案和解析>>

科目: 来源: 题型:解答题

7.已知极坐标系的极点与平面直角坐标系的原点重合,极轴与直角坐标系的x轴正半轴重合.直线l过点P(-1,-1),倾斜角为45°,曲线C的极坐标方程为ρ=$\sqrt{2}$sin(θ+$\frac{π}{4}$).直线l与曲线C相交于M,N两点.
(Ⅰ)求直线l的参数方程和曲线C的直角坐标方程;
(Ⅱ)求线段MN的长和点P到M,N两点的距离之积.

查看答案和解析>>

科目: 来源: 题型:解答题

6.在直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴,建立极坐标系.已知曲线C1:$\left\{\begin{array}{l}x=4+cost\\ y=-3+sint\end{array}$(t为参数),C2:$\left\{\begin{array}{l}x=6cosθ\\ y=2sinθ\end{array}$(θ为参数).
(Ⅰ)化C1,C2的方程为普通方程,并说明它们分别表示什么曲线;
(Ⅱ)若C1上的点P对应的参数为t=-$\frac{π}{2}$,Q为C2上的动点,求线段PQ的中点M到直线C3:ρcosθ-$\sqrt{3}$ρsinθ=8+2$\sqrt{3}$  距离的最小值.

查看答案和解析>>

科目: 来源: 题型:填空题

5.某四棱锥的三视图如图所示,则该四棱锥中最长棱的棱长为$2\sqrt{3}$.

查看答案和解析>>

科目: 来源: 题型:选择题

4.某地实行阶梯电价,以日历年(每年1月1日至12月31日)为周期执行居民阶梯电价,即:一户居民用户全年不超过2880度(1度=千瓦时)的电量,执行第一档电价标准,每度电0.4883元;全年超过2880度至4800度之间的电量,执行第二档电价标准,每度电0.5383元;全年超过4800度以上的电量,执行第三档电价标准,每度电0.7883元.下面是关于阶梯电价的图形表示,其中正确的有(  )

参考数据:0.4883元/度×2880度=1406.30元,0.5383元/度×(4800-2880)度+1406.30元=2439.84元.
A.①②B.②③C.①③D.①②③

查看答案和解析>>

科目: 来源: 题型:选择题

3.函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+bx-c,x<0}\\{lgx,x>0}\end{array}\right.$,若b=$\frac{5}{π}$${∫}_{0}^{2}$$\sqrt{4-{x}^{2}}$dx,c=${∫}_{0}^{x}$sinxdx,则方程f(x)-$\frac{x}{4π}$=0的不等实根的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目: 来源: 题型:选择题

2.设a=20.2,b=ln2,c=log2$\frac{9}{10}$,则a,b,c的大小关系是(  )
A.a>b>cB.a>c>bC.b>a>cD.b>c>a

查看答案和解析>>

同步练习册答案