相关习题
 0  225267  225275  225281  225285  225291  225293  225297  225303  225305  225311  225317  225321  225323  225327  225333  225335  225341  225345  225347  225351  225353  225357  225359  225361  225362  225363  225365  225366  225367  225369  225371  225375  225377  225381  225383  225387  225393  225395  225401  225405  225407  225411  225417  225423  225425  225431  225435  225437  225443  225447  225453  225461  266669 

科目: 来源: 题型:解答题

1.已知点P是函数y=1-x2的图象上位于第一象限内的一动点,过点P作此函数图象的切线l,直线l与x,y轴分别交于A、B两点,O为坐标原点,设点P的横坐标为t,△AOB的面积为f(t).
(1)求函数f(t)表达式及定义域;
(2)求f(t)取最小值时切线l的方程.

查看答案和解析>>

科目: 来源: 题型:解答题

20.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)与双曲线$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{9}$=1有公共顶点,且双曲线C经过点A(6,$\sqrt{5}$).
(1)求双曲线C的方程,并写出渐近线方程;
(2)若点P是双曲线C上一点,且P到右焦点的距离为6,求P到左准线的距离.

查看答案和解析>>

科目: 来源: 题型:解答题

19.设命题p:实数x满足a<x<3a,其中a>0,命题q:实数x满足x2-5x+6<0.
(1)若a=1且命题p∧q为真,求实数x的取值范围;
(2)若q是p的充分条件,求实数a的取值范围.

查看答案和解析>>

科目: 来源: 题型:选择题

18.如图,在正方体ABCD-A1B1C1D1中,给出以下结论:
①AC1⊥平面A1BD;
②直线AC1与平面A1BD的交点为△A1BD的外心;
③若点P在△A1BD所在平面上运动,则三棱锥P-B1CD1的体积为定值.
其中,正确结论的个数是(  )
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目: 来源: 题型:选择题

17.如图,在棱长为1的正方体ABCD-A1B1C1D1中,给出以下结论:
①直线A1B与B1C所成的角为60°;
②若M是线段AC1上的动点,则直线CM与平面BC1D所成角的正弦值的取值范围是$[\frac{{\sqrt{3}}}{3},1]$;
③若P,Q是线段AC上的动点,且PQ=1,则四面体B1D1PQ的体积恒为$\frac{{\sqrt{2}}}{6}$.
其中,正确结论的个数是(  )
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目: 来源: 题型:填空题

16.已知函数f(x)=lnx+1的图象与直线y=x-a+2015恰有一个公共点,关于x的不等式loga$\frac{x+1}{x-1}$>loga$\frac{m}{x+2}$在[1,+∞)上恒成立.则实数m的取值范围是(0,2$\sqrt{6}$+5).

查看答案和解析>>

科目: 来源: 题型:填空题

15.四棱锥S-ABCD底面为正方形,边长为$\sqrt{2}$,且SA=SB=SC=SD,高为2,P,Q两点分别在线段BD,SC上,则P,Q两点间的最短距离为$\frac{2\sqrt{5}}{5}$.

查看答案和解析>>

科目: 来源: 题型:选择题

14.已知F为抛物线C:y2=8x的焦点,点E在点C的准线上,且在x轴上方,线段EF的垂直平分线于C的准线交于点M(-2,-3),与C交于点P,则△PEF的面积为(  )
A.$\frac{5}{2}$B.5C.10D.$\frac{5}{4}$

查看答案和解析>>

科目: 来源: 题型:解答题

13.(1)设z=a+bi(a,b∈R),求证:$\frac{z-1}{z+1}$为实数的充要条件是b=0.
(2)证明:当a>1时,$\sqrt{a+1}$+$\sqrt{a-1}$<2$\sqrt{a}$.

查看答案和解析>>

科目: 来源: 题型:填空题

12.已知抛物线y2=2px(p>0),过焦点F的直线与抛物线相较于A,B两点,线段AB的垂直平分线分别交准线l和AB于点M,N,若MN=λAB成立,则实数λ的取值范围为[1,+∞).

查看答案和解析>>

同步练习册答案