相关习题
 0  225274  225282  225288  225292  225298  225300  225304  225310  225312  225318  225324  225328  225330  225334  225340  225342  225348  225352  225354  225358  225360  225364  225366  225368  225369  225370  225372  225373  225374  225376  225378  225382  225384  225388  225390  225394  225400  225402  225408  225412  225414  225418  225424  225430  225432  225438  225442  225444  225450  225454  225460  225468  266669 

科目: 来源: 题型:解答题

11.某地区今年1月,2月,3月患某种传染病的人数分别为52,61,68.为了预测以后各月的患病人数,甲选择的了模型y=ax2+bx+c,乙选择了模型y=pqx+r,其中y为患病人数,x为月份数,a,b,c,p,q,r都是常数,结果4月,5月,6月份的患病人数分别为74,78,83,你认为谁选择的模型较好?

查看答案和解析>>

科目: 来源: 题型:解答题

10.已知1650年世界人口为5亿,当时人口的年增长率为0.3%;1970年世界人口为36亿,当时人口的年增长率为2.1%.
(1)用马尔萨斯人口模型计算,什么时候世界人口是1650年的2倍?什么时候世界人口是1970年的2倍?
(2)实际上,1850年以前世界人口就超过了10亿;而2003年世界人口还没有达到72亿,你对同样的模型得出的两个结果有何看法?

查看答案和解析>>

科目: 来源: 题型:选择题

9.已知椭圆C1:$\frac{{x}^{2}}{{a}^{2}}$+y2=1(a>1)与双曲线C2:$\frac{{x}^{2}}{{m}^{2}}$-y2-1(m>0)有公共焦点F1,F2,曲线C1,C2在第一象限交于点P,PF1,PF2的中点分别为M,N,O为坐标原点,四边形OMPN的周长为2$\sqrt{3}$,则实数m的值为(  )
A.1B.$\sqrt{2}$C.2$\sqrt{2}$D.$\sqrt{3}$

查看答案和解析>>

科目: 来源: 题型:选择题

8.过双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左顶点A作斜率为l的直线,该直线与双曲线的两条渐近线的交点分别为B,C,若$\overrightarrow{AB}$=$\overrightarrow{BC}$,且以焦点为圆心,与渐近线相切的圆的面积为π,则此双曲线的离心率为(  )
A.$\sqrt{3}$B.$\sqrt{5}$C.$\sqrt{10}$D.2$\sqrt{2}$

查看答案和解析>>

科目: 来源: 题型:解答题

7.在边长为2的正方形铁板ABCD中.以点C为圆心,1为半径作的$\frac{1}{4}$个圆,如图所示,过圆弧上任意一点作圆弧的切线,可将铁板切为两个部分,求点A的所在部分的最大面积.

查看答案和解析>>

科目: 来源: 题型:解答题

6.已知f(x)=|x-a|+|2x-a|,a<0.
(Ⅰ)求函数f(x)的最小值;
(Ⅱ)若不等式f(x)<$\frac{1}{2}$的解集非空,求a的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

5.某学校为了了解学生使用手机的情况,分别在高一和高二两个年级各随机抽取了100名学生进行调查.下面是根据调查结果绘制的学生日均使用手机时间的频率分布直方图和频数分布表,将使用手机时间不低于80分钟的学生称为“手机迷”.
高二学生日均使用手机时间的频数分布表
时间分组频数
[0,20)12
[20,40)20
[40,60)24
[60,80)26
[80,100)14
[100,120]4
(Ⅰ)将频率视为概率,估计哪个年级的学生是“手机迷”的概率大?请说明理由.
(Ⅱ)在高一的抽查中,已知随机抽到的女生共有55名,其中10名为“手机迷”.根据已知条件完成下面的2×2列联表,并据此资料你有多大的把握认为“手机迷”与性别有关?
非手机迷手机迷合计
301545         
451055
合计7525100
附:随机变量${k^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$(其中n=a+b+c+d为样本总量).
参考数据P(k2≥x00.150.100.050.025
x02.0722.7063.8415.024

查看答案和解析>>

科目: 来源: 题型:解答题

4.在△ABC中,角A,B,C的对边分别为a,b,c,且sinA+sinB=2sinC,a=2b.
(Ⅰ)求cos(π-A)的值;
(Ⅱ)若S△ABC=$\frac{{4\sqrt{15}}}{3}$,求c的值.

查看答案和解析>>

科目: 来源: 题型:解答题

3.已知等差数列{an}的前n项和为Sn,且满足:a3=6,a5+a7=24.
(Ⅰ)求等差数列{an}的通项公式;
(Ⅱ)求数列$\left\{{\frac{1}{S_n}}\right\}$的前P项和Tn

查看答案和解析>>

科目: 来源: 题型:填空题

2.在锐角△ABC中,角A,B,C所对的边分别为a,b,c,若$B=\frac{π}{6}$,则$\frac{acosC-ccosA}{b}$的取值范围为(-1,1).

查看答案和解析>>

同步练习册答案